|
|
A008846
|
|
Hypotenuses of primitive Pythagorean triangles.
|
|
50
|
|
|
5, 13, 17, 25, 29, 37, 41, 53, 61, 65, 73, 85, 89, 97, 101, 109, 113, 125, 137, 145, 149, 157, 169, 173, 181, 185, 193, 197, 205, 221, 229, 233, 241, 257, 265, 269, 277, 281, 289, 293, 305, 313, 317, 325, 337, 349, 353, 365, 373, 377, 389, 397, 401, 409, 421, 425, 433
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Numbers of the form x^2 + y^2 where x is even, y is odd and gcd(x, y)=1. Essentially the same as A004613.
Numbers n for which there is no solution to 4/n = 2/x + 1/y for integers y > x > 0. Related to A073101. - T. D. Noe, Sep 30 2002
Discovered by Frénicle (on Pythagorean triangles): Méthode pour trouver ..., page 14 on 44. First text of Divers ouvrages ... Par Messieurs de l'Académie Royale des Sciences, in-folio, 6+518+1 pp., Paris, 1693. Also A020882 with only one of doubled terms (first: 65). - Paul Curtz, Sep 03 2008
All divisors of terms are of the form 4*k+1 (products of members of A002144). - Zak Seidov, Apr 13 2011
Not only the square of these numbers is equal to the sum of two nonzero squares, but the numbers themselves also are; this sequence is then a subsequence of A004431. - Jean-Christophe Hervé, Nov 10 2013
Conjecture: numbers p for which sqrt(-1) exists in the p-adic numbering system. For example the 5-adic number ...2431212, when squared, gives ...4444444, which is -1, and 5 is in the sequence. - Thierry Banel, Aug 19 2022
|
|
REFERENCES
|
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, pp. 10, 107.
|
|
LINKS
|
|
|
FORMULA
|
x^2 + y^2 where x is even, y is odd and gcd(x, y)=1. Essentially the same as A004613.
|
|
MAPLE
|
for x from 1 by 2 to 50 do for y from 2 by 2 to 50 do if gcd(x, y) = 1 then print(x^2+y^2); fi; od; od; [ then sort ].
|
|
MATHEMATICA
|
Union[ Map[ Plus@@(#1^2)&, Select[ Flatten[ Array[ {2*#1, 2*#2-1}&, {10, 10} ], 1 ], GCD@@#1 == 1& ] ] ] (* Olivier Gérard, Aug 15 1997 *)
lst = {}; Do[ If[ GCD[m, n] == 1, a = 2 m*n; b = m^2 - n^2; c = m^2 + n^2; AppendTo[lst, c]], {m, 100}, {n, If[ OddQ@m, 2, 1], m - 1, 2}]; Take[ Union@ lst, 57] (* Robert G. Wilson v, May 02 2009 *)
Union[Sqrt[#[[1]]^2+#[[2]]^2]&/@Union[Sort/@({Times@@#, (Last[#]^2-First[#]^2)/2}&/@ (Select[Subsets[Range[1, 33, 2], {2}], GCD@@#==1&]))]] (* Harvey P. Dale, Aug 26 2012 *)
|
|
PROG
|
(Haskell)
a008846 n = a008846_list !! (n-1)
a008846_list = filter f [1..] where
f n = all ((== 1) . (`mod` 4)) $ filter ((== 0) . (n `mod`)) [1..n]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|