OFFSET
1,1
COMMENTS
Numbers of the form x^2 + y^2 where x is even, y is odd and gcd(x, y)=1. Essentially the same as A004613.
Numbers n for which there is no solution to 4/n = 2/x + 1/y for integers y > x > 0. Related to A073101. - T. D. Noe, Sep 30 2002
Discovered by Frénicle (on Pythagorean triangles): Méthode pour trouver ..., page 14 on 44. First text of Divers ouvrages ... Par Messieurs de l'Académie Royale des Sciences, in-folio, 6+518+1 pp., Paris, 1693. Also A020882 with only one of doubled terms (first: 65). - Paul Curtz, Sep 03 2008
All divisors of terms are of the form 4*k+1 (products of members of A002144). - Zak Seidov, Apr 13 2011
A024362(a(n)) > 0. - Reinhard Zumkeller, Dec 02 2012
Closed under multiplication. Primitive elements are in A002144. - Jean-Christophe Hervé, Nov 10 2013
Not only the square of these numbers is equal to the sum of two nonzero squares, but the numbers themselves also are; this sequence is then a subsequence of A004431. - Jean-Christophe Hervé, Nov 10 2013
Conjecture: numbers p for which sqrt(-1) exists in the p-adic numbering system. For example the 5-adic number ...2431212, when squared, gives ...4444444, which is -1, and 5 is in the sequence. - Thierry Banel, Aug 19 2022
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, pp. 10, 107.
LINKS
Zak Seidov, Table of n, a(n) for n = 1..87881 (with a(n) up to 10^6).
Ron Knott, Pythagorean Triples and Online Calculators
FORMULA
x^2 + y^2 where x is even, y is odd and gcd(x, y)=1. Essentially the same as A004613.
MAPLE
for x from 1 by 2 to 50 do for y from 2 by 2 to 50 do if gcd(x, y) = 1 then print(x^2+y^2); fi; od; od; [ then sort ].
MATHEMATICA
Union[ Map[ Plus@@(#1^2)&, Select[ Flatten[ Array[ {2*#1, 2*#2-1}&, {10, 10} ], 1 ], GCD@@#1 == 1& ] ] ] (* Olivier Gérard, Aug 15 1997 *)
lst = {}; Do[ If[ GCD[m, n] == 1, a = 2 m*n; b = m^2 - n^2; c = m^2 + n^2; AppendTo[lst, c]], {m, 100}, {n, If[ OddQ@m, 2, 1], m - 1, 2}]; Take[ Union@ lst, 57] (* Robert G. Wilson v, May 02 2009 *)
Union[Sqrt[#[[1]]^2+#[[2]]^2]&/@Union[Sort/@({Times@@#, (Last[#]^2-First[#]^2)/2}&/@ (Select[Subsets[Range[1, 33, 2], {2}], GCD@@#==1&]))]] (* Harvey P. Dale, Aug 26 2012 *)
PROG
(Haskell)
a008846 n = a008846_list !! (n-1)
a008846_list = filter f [1..] where
f n = all ((== 1) . (`mod` 4)) $ filter ((== 0) . (n `mod`)) [1..n]
-- Reinhard Zumkeller, Apr 27 2011
(PARI) is(n)=Set(factor(n)[, 1]%4)==[1] \\ Charles R Greathouse IV, Nov 06 2015
(Python) # for an array from the beginning
from math import gcd, isqrt
hypothenuses_upto = 433
A008846 = set()
for x in range(2, isqrt(hypothenuses_upto)+1):
for y in range(min(x-1, (yy:=isqrt(hypothenuses_upto-x**2))-(yy%2 == x%2)) , 0, -2):
if gcd(x, y) == 1: A008846.add(x**2 + y**2)
(Python) # for single k
from sympy import factorint
def A008846_isok(k): return not any([(pf-1) % 4 for pf in factorint(k)]) # Karl-Heinz Hofmann, Oct 01 2024
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
N. J. A. Sloane, Ralph Peterson (RALPHP(AT)LIBRARY.nrl.navy.mil)
EXTENSIONS
More terms from T. D. Noe, Sep 30 2002
STATUS
approved