login
A008843
Squares of NSW numbers (A002315): x^2 such that x^2 - 2y^2 = -1 for some y.
7
1, 49, 1681, 57121, 1940449, 65918161, 2239277041, 76069501249, 2584123765441, 87784138523761, 2982076586042449, 101302819786919521, 3441313796169221281, 116903366249966604049, 3971273138702695316401, 134906383349641674153601, 4582845760749114225906049, 155681849482120242006652081
OFFSET
0,2
COMMENTS
Also indices of triangular numbers (A000217) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 16 2015
a(n)-th triangular number is a square; subsequence of A001108. - Jaroslav Krizek, Aug 05 2016
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 256.
P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 288.
P. F. Teilhet, Note #2094, L'Intermédiaire des Mathématiciens, 10 (1903), pp. 235-238.
LINKS
M. A. Gruber, Artemas Martin, A. H. Bell, J. H. Drummond, A. H. Holmes and H. C. Wilkes, Problem 47, Amer. Math. Monthly, 4 (1897), 25-28.
D. H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Annals Math., 36 (1935), 637-649.
FORMULA
a(n) = 34*a(n-1) - a(n-2) + 16 = A002315(n)^2 = 2*A001653(n)^2 - 1 = 2*A008844(n) - 1 = floor(A046176(n)*sqrt(2)) = 6*A055792(n+1) - a(n-1) + 4 = (6*A055792(n+2) + a(n-1) - 20)/35. - Henry Bottomley, Nov 13 2001
a(n) = A001108(2n+1). - Ira M. Gessel, Nov 05 2014
a(n) = Sum_{k=1..2*n+1} 2^(k-1)*binomial(4*n+2, 2*k). - Zoltan Zachar (zachar(AT)fellner.sulinet.hu), Oct 03 2003
O.g.f.: -(1+14*x+x^2)/((-1+x)*(1-34*x+x^2)). - R. J. Mathar, Nov 23 2007
a(n) = -(cosh((2*n - 1)*arctanh(sqrt(2))))^2 = -1 - (sinh((2*n - 1)*arctanh(sqrt(2))))^2. - Artur Jasinski, Oct 30 2008
a(n) = Sum_{k=0..4n+1} A000129(k), see Santana and Diaz-Barrero link at A002315. - Ivan N. Ianakiev, Jul 15 2022
MATHEMATICA
LinearRecurrence[{35, -35, 1}, {1, 49, 1681}, 17] (* Stefano Spezia, Aug 17 2024 *)
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
a(14)-a(17) from Stefano Spezia, Aug 17 2024
STATUS
approved