login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146313
a(n) = cosh( (2n - 1)*arcsinh(sqrt(2)) )^2 = 1 - cos( (2n - 1)*arcsin(sqrt(3)) )^2.
25
3, 243, 23763, 2328483, 228167523, 22358088723, 2190864527283, 214682365584963, 21036680962799043, 2061380051988721203, 201994208413931878803, 19793371044513335401443, 1939548368153892937462563, 190055946708036994535929683, 18623543229019471571583646323
OFFSET
1,1
FORMULA
a(n) = A146312(n) + 1.
a(n) = sin((2n-1)*arcsin(sqrt(3)))^2 = 1+sinh((2n-1)*arcsinh(sqrt(2)))^2. - Artur Jasinski, Oct 30 2008
a(n) = 99*a(n-1)-99*a(n-2)+a(n-3). - Colin Barker, Oct 26 2014
G.f.: -3*x*(x^2-18*x+1) / ((x-1)*(x^2-98*x+1)). - Colin Barker, Oct 26 2014
MAPLE
A146313 := proc(n) cosh( (2*n - 1)*arcsinh(sqrt(2)) )^2; expand(%) ; simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
MATHEMATICA
Table[Round[N[Cosh[(2 n - 1) ArcSinh[Sqrt[2]]], 300]^2], {n, 1, 50}] (* Artur Jasinski, Oct 30 2008 *)
PROG
(PARI) Vec(-3*x*(x^2-18*x+1) / ((x-1)*(x^2-98*x+1)) + O(x^100)) \\ Colin Barker, Oct 26 2014
CROSSREFS
Sequence in context: A236249 A338453 A013778 * A092799 A229690 A140163
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 29 2008
EXTENSIONS
More terms from Colin Barker, Oct 26 2014
STATUS
approved