login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146312
a(n) = -cos((2 n - 1) arcsin(sqrt(3)))^2 = -1 + cosh((2 n - 1) arcsinh(sqrt(2)))^2.
21
2, 242, 23762, 2328482, 228167522, 22358088722, 2190864527282, 214682365584962, 21036680962799042, 2061380051988721202, 201994208413931878802, 19793371044513335401442, 1939548368153892937462562, 190055946708036994535929682, 18623543229019471571583646322
OFFSET
1,1
FORMULA
General formula: cosh((2*n-1)*arcsinh(sqrt(2)))^2 + cos((2*n-1)*arcsin(sqrt(3))^2 = 1.
a(n) = A146313(n) - 1.
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3). - Colin Barker, Oct 26 2014
G.f.: -2*x*(x^2+22*x+1) / ((x-1)*(x^2-98*x+1)). - Colin Barker, Oct 26 2014
a(n) = 2*A054320(n-1)^2. - Jon E. Schoenfield, Jun 08 2018
MATHEMATICA
Table[Round[ -N[Cos[(2 n - 1) ArcSin[Sqrt[3]]], 300]^2], {n, 1, 50}]
LinearRecurrence[{99, -99, 1}, {2, 242, 23762}, 50] (* G. C. Greubel, Jul 03 2017 *)
PROG
(PARI) Vec(-2*x*(x^2+22*x+1) / ((x-1)*(x^2-98*x+1)) + O(x^100)) \\ Colin Barker, Oct 26 2014
CROSSREFS
Sequence in context: A055968 A068838 A074256 * A109930 A309037 A013509
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 29 2008
EXTENSIONS
More terms from Colin Barker, Oct 26 2014
STATUS
approved