login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146310
Good approximation to the 10^n-th lower twin prime.
1
100, 3380, 75610, 1257632, 18456351, 252177334, 3285912624, 41374714817, 507584081641, 6100475249386, 72109024427766, 840671492062887, 9687559620379066, 110531285543842366, 1250315111094881329
OFFSET
1,1
COMMENTS
a(10) = 6100475249386 has relative 0.000000698 error from the actual value 6100479510551.
FORMULA
Pi2(n) = number of twin primes <= n.
Twinpi(n) = number of twin prime pairs < n
Li_2(n)=intnum(t=2,n,2*c_2/log(t)^2)
The relationship n = Pi2(twinpi(n)) is used with a bisection routine where
Pi2(n) is the Hardy-Littlewood integral approximation for number of twin
primes
PROG
(PARI) g(n) = {
print1(floor(twinx2(10)), ", ");
for(x=2, n, y=twinx(10^x); print1(floor(y)", "))
}
twinx(n) =
{
local(r1, r2, r, est);
r1 = n;
r2 = n*n;
for(x=1, 100,
r=(r1+r2)/2.;
/*Hardy-Littlewood integral approximation for pi_2(x).*/
est = Li_2(r);
if(est <= n, r1=r, r2=r);
);
r;
}
twinx2(n) =
{
local(x, tx, r1, r2, r, pw, b, e, est);
if(n==1, return(3));
b=10;
pw=log(n)/log(b);
m=pw+1;
r1 = 0;
r2 = 7.213;
for(x=1, 100,
r=(r1+r2)/2;
est = b^(m+r);
tx = Li_2(est);
if(tx <= b^pw, r1=r, r2=r);
);
est;
}
Li_2(x)=intnum(t=2, x, 2*0.660161815846869573927812110014555778432623/log(t)^2)
CROSSREFS
Sequence in context: A200937 A112889 A118490 * A117685 A091134 A017816
KEYWORD
nonn
AUTHOR
Cino Hilliard, Oct 29 2008
STATUS
approved