login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309037 Exponential Demlo sequence, like 12345...54321, but for powers of 2 instead. 1
2, 242, 24842, 2496842, 249936842, 24998736842, 2499974736842, 249999494736842, 24999989894736842, 2499999797894736842, 249999995957894736842, 24999999919157894736842, 2499999998383157894736842 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Lim_{n->infinity} a(n)/10^(2n-1) = 0.25, thus the first digits converge toward 24999999999999999999999...

In other words, Sum_{i>=1} 2^n/10^n = Sum_{i>=1} 5^(-n) = 5/(1-5) = 5/4 = 1.25. Excluding the 1 at the beginning of the number gives 0.25. Dividing each term by 2 gives the previous term with 1s attached on each side.

For example, 24998736842 / 2 = 12499368421.

In the set of {a(n)}, the final digits of a(n) eventually tend to be the repeating portion of 1/19 as n approaches infinity: ... 052631578947368421 05263157894736842.

If 8421... is analytically continued, 052631578947436... is obtained because Sum_{i>=1} 1/(2^n*10^n) is 1/19.

I propose that the Demlo function should be generalized, so that the function A002477(A000079(n)) produces this sequence. As another example, A002477(A000040(n)) should produce 2, 232, 23532, 2357532, 235817532, 23582417532, etc.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..500

FORMULA

a(n) = 2^1*10^0 + 2^2*10^1 + ... + 2^(n-1)*10^(n-2) + 2^n*10^(n-1) + 2^(n-1)*10^n + 2^(n-2)*10^(n+1) + ... + 2^2*10^(2n-3) + 2^1*10^(2n-2).

Conjectures from Colin Barker, Jul 16 2019: (Start)

G.f.: 2*x*(1 - 10*x)*(1 + 10*x) / ((1 - x)*(1 - 20*x)*(1 - 100*x)).

a(n) = (-80 - 3*4^n*5^(1+n) + 19*100^n) / 760.

a(n) = 121*a(n-1) - 2120*a(n-2) + 2000*a(n-3) for n>3.

(End)

EXAMPLE

For n = 4:

  2000000    8 - 2 = 6

   400000

    80000

    16000    4 - 1 = 3

      800

       40

  +     2

  -------

  2496842

For n = 12:

2*10^(24-2) + 4*10^(24-3) + 8*10^(24-4) + ... + 4096*10^11 + ... + 8*10^2 + 4*10^1 + 2

  20000000000000000000000    24 - 2 = 22

   4000000000000000000000

    800000000000000000000

    160000000000000000000

     32000000000000000000

      6400000000000000000

      1280000000000000000

       256000000000000000

        51200000000000000

        10240000000000000

         2048000000000000

          409600000000000    12 - 1 = 11

           20480000000000

            1024000000000

              51200000000

               2560000000

                128000000

                  6400000

                   320000

                    16000

                      800

                       40

  +                     2

  -----------------------

  24999999919157894736842

CROSSREFS

Cf. A002477, A000079. Numbers produced from A000079 using A002477 algorithm.

Sequence in context: A074256 A146312 A109930 * A013509 A013472 A013505

Adjacent sequences:  A309034 A309035 A309036 * A309038 A309039 A309040

KEYWORD

base,nonn

AUTHOR

Eliora Ben-Gurion, Jul 08 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 19:41 EST 2020. Contains 332295 sequences. (Running on oeis4.)