The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309038 Irregular triangle T read by rows: given a square made of n^2 squares of unit area, T(n, k) is the longest perimeter that can be obtained by removing k of n^2 squares such that the modified figure remains connected and without holes (n >= 0 and 0 <= k <= n^2). 4
 0, 4, 0, 8, 8, 8, 4, 0, 12, 14, 16, 18, 20, 16, 12, 8, 4, 0, 16, 18, 20, 22, 24, 26, 28, 28, 28, 26, 24, 20, 16, 12, 8, 4, 0, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 42, 40, 38, 36, 32, 28, 24, 20, 16, 12, 8, 4, 0, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 56, 56, 56, 56, 56, 56, 52, 48, 44, 40, 36, 32, 28, 24, 20, 16, 12, 8, 4, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS All the terms of this sequence are even numbers (A005843). In the figure, two unit area squares can be connected in a corner or sideways. Every n-th row of the triangle is made of almost four successive finite arithmetic progressions characterized respectively by the following common differences: 2, 0, -2, -4. If we let h_i(n) be the number of first differences of i-th progression (i = 1,2,3,4), we have that 4*n + 2*h_1(n) - 2*h_3(n) - 4*h_4(n) = 0 and h_1(n) + h_2(n) + h_3(n) + h_4(n) = n^2. LINKS FORMULA T(n, 0) = A008586(n). T(n, k) = 2*(2*n + k) for 0 <= k <= h_1(n), T(n, k) = 2*(2*n + h_1(n)) for h_1(n) <= k <= h_1(n) + h_2(n), T(n, k) = 2*(2*(n + h_1(n)) + h_2(n) - k) for h_1(n) + h_2(n) <= k <= h_1(n) + h_2(n) + h_3(n), T(n, k) = 2*(2*(n + h_2(n) - k) + 3*h_1(n) + h_3(n)), for h_1(n) + h_2(n) + h_3(n) <= k <= n^2, where h_4(n) = n for 0 <= n <= 2 and h_4(n) = (1/8)*(-29 + 12*n + 2*n^2 - 3*cos(n*Pi) - 12*sin(n*Pi/2)) for n > 2, h_3(n) = 2*delta(n, 4) - 4*delta(n, 1) + 1 - cos(n*Pi) + 2*sin(n*Pi/2) and delta(i, j) is the Kronecker delta, h_2(n) = 2*(delta(n, 2) + delta(n, 4)) for 0 <= n <= 4 and h_2(n) = (1/8)*(71 - 20*n + 2*n^2 + 25*cos(n*Pi) + 4*sin(n*Pi/2)) for n > 4, h_1(n) = n^2 - (h_1(n) + h_2(n) + h_3(n)). EXAMPLE The triangle T(n, k) begins: ---+------------------------------------------------------------------- n\k|  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16 ---+------------------------------------------------------------------- 0  |  0 1  |  4   0 2  |  8   8   8   4   0 3  | 12  14  16  18  20  16  12   8   4   0 4  | 16  18  20  22  24  26  28  28  28  26  24  20  16  12   8   4   0 ... Here are the values of h_i's for the first seven rows of the triangle T: n    h_1(n)   h_2(n)   h_3(n)   h_4(n) -------------------------------------- 0         0        0        0        0 1         0        0        0        1 2         0        2        0        2 3         4        0        0        5 4         6        2        2        6 5        12        0        4        9 6        16        6        0       14 ... Illustrations for n = 4, k=0..15 by Andrew Howroyd, Sep 01 2019: (Start)    __.__.__.__    __.__.__.__    __.__.__.__    __.__.__.__   |           |  |           |  |           |  |           |   |           |  |__         |  |__         |  |__       __|   |           |   __|        |   __|__      |   __|__   |__   |__.__.__.__|  |__.__.__.__|  |__|  |__.__|  |__|  |__.__|        (16)           (18)          (20)           (22)    __.__.__.__    __.  .__.__    __    __.__    __    __.__   |           |  |  |__|     |  |  |  |     |  |  |  |   __|   |__    __.__|  |__    __.__|  |__|__|__.__|  |__|__|__|    __|__|__.__    __|__|__.__    __|__|__.__    __|__|__.__   |__|  |__.__|  |__|  |__.__|  |__|  |__.__|  |__|  |__.__|       (24)            (26)          (28)           (28)    __       __             __             __   |  |   __|__|   __    __|__|   __    __|__|   __    __   |__|__|__|     |__|__|__|     |__|__|__|     |__|__|__|    __|__|__.__    __|__|__.__    __|__|__       __|__|__   |__|  |__.__|  |__|  |__.__|  |__|  |__|     |__|  |__|       (28)            (26)         (24)           (20)    __    __             __   |__|__|__|         __|__|         __             __    __|__|         __|__|         __|__|           |__|   |__|           |__|           |__|       (16)         (12)            (8)             (4) (End) MATHEMATICA h4[n_]:=If[n>2, (1/8)(-29+12n+2n^2-3*Cos[n*Pi]-12*Sin[n*Pi/2]), n]; h3[n_]:=1-Cos[n*Pi]-4*KroneckerDelta[n, 1]+2*KroneckerDelta[n, 4]+2*Sin[n*Pi/2]; h2[n_]:=If[n>4, (1/8)(71-20n+2n^2+25Cos[n*Pi]+4Sin[n*Pi/2]), 2*(KroneckerDelta[n, 2]+KroneckerDelta[n, 4])]; h1[n_]:=n^2-(h2[n]+h3[n]+h4[n]); T[n_, k_]:=If[0<=k<=h1[n], 2(2n+k), If[h1[n]

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 16:32 EST 2020. Contains 331204 sequences. (Running on oeis4.)