OFFSET
3,1
LINKS
Stefano Spezia, Table of n, a(n) for n = 3..10000
Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
FORMULA
a(2*k) = 2*k*(k+1), a(2*k+1) = 2*(2*k+1)*(k+1).
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). - Colin Barker, Sep 13 2014
G.f.: -2*x^3*(2*x^5+x^4-6*x^3-3*x^2+6*x+6) / ((x-1)^3*(x+1)^3). - Colin Barker, Sep 13 2014
a(n) = (3*n^2+4*n-n^2*(-1)^n)/4. - Luce ETIENNE, Jul 18 2015
E.g.f.: x*((4 + x)*cosh(x) + (3 + 2*x)*sinh(x) - 4*(1 + x))/2. - Stefano Spezia, May 24 2021
MATHEMATICA
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {12, 12, 30, 24, 56, 40}, 100] (* Paolo Xausa, Feb 29 2024 *)
PROG
(PARI) Vec(-2*x^3*(2*x^5+x^4-6*x^3-3*x^2+6*x+6)/((x-1)^3*(x+1)^3) + O(x^100)) \\ Colin Barker, Sep 13 2014
(Magma) [(3*n^2+4*n-n^2*(-1)^n)/4: n in [3..60]]; // Vincenzo Librandi, Jul 19 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jun 15 2000
STATUS
approved