

A251643


Smallest composite c such that F_(c(c/p)) == 0 (mod c) with p = prime(n), F_k = A000045(k) and a/b the Kronecker symbol.


1



12, 12, 25, 168, 660, 323, 377, 442, 552, 442, 323, 1891, 442, 323, 323, 323, 377, 323, 377, 323, 323, 323, 323, 323, 442, 377, 442, 323, 377, 377, 377, 377, 2834, 442, 377, 377, 377, 2834, 323, 442, 1891, 442, 323, 442, 323, 1891, 323, 377, 323, 442, 323, 323
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



PROG

(PARI) forprime(p=1, 1e3, c=2; while(Mod(fibonacci(ckronecker(c, p)), c)!=0  ispseudoprime(c), c++); print1(c, ", "))


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



