%I #21 Dec 21 2014 10:54:36
%S 12,12,25,168,660,323,377,442,552,442,323,1891,442,323,323,323,377,
%T 323,377,323,323,323,323,323,442,377,442,323,377,377,377,377,2834,442,
%U 377,377,377,2834,323,442,1891,442,323,442,323,1891,323,377,323,442,323,323
%N Smallest composite c such that F_(c(c/p)) == 0 (mod c) with p = prime(n), F_k = A000045(k) and a/b the Kronecker symbol.
%H Felix FrÃ¶hlich, <a href="/A251643/b251643.txt">Table of n, a(n) for n = 1..999</a>
%o (PARI) forprime(p=1, 1e3, c=2; while(Mod(fibonacci(ckronecker(c, p)), c)!=0  ispseudoprime(c), c++); print1(c, ", "))
%K nonn
%O 1,1
%A _Felix FrÃ¶hlich_, Dec 19 2014
