login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251645
Number of (n+2) X (1+2) 0..3 arrays with no row, column, diagonal or antidiagonal in any 3 X 3 subblock summing to 0 2 4 5 7 or 9.
1
376, 448, 738, 1248, 2382, 4140, 6978, 13532, 23574, 39904, 78046, 136408, 231290, 455168, 797254, 1353500, 2675622, 4693960, 7976098, 15819328, 27784502, 47242988, 93923158, 165100664, 280858818, 559333552, 983799526, 1674143116
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 2*a(n-2) + 5*a(n-3) - 7*a(n-4) - 12*a(n-5) + 6*a(n-6) + 6*a(n-7) for n>14.
Empirical g.f.: 2*x*(188 + 36*x - 231*x^2 - 1133*x^3 + 25*x^4 + 1610*x^5 + 60*x^6 - 494*x^7 - 40*x^8 + 12*x^9 + 40*x^10 + 6*x^11 - 18*x^12 - 6*x^13) / ((1 - x)*(1 + x)*(1 - x - x^2)*(1 - 6*x^3)). - Colin Barker, Nov 30 2018
EXAMPLE
Some solutions for n=4:
..1..1..1....0..2..1....2..3..1....1..1..1....1..2..0....1..1..1....0..1..2
..2..2..2....1..0..2....1..2..3....2..2..2....2..3..1....3..0..0....1..2..0
..3..0..0....2..1..3....0..1..2....3..3..0....0..1..2....2..2..2....2..3..1
..1..1..1....0..2..1....2..3..1....1..1..1....1..2..0....1..1..1....0..1..2
..2..2..2....1..3..2....1..2..0....2..2..2....2..0..1....0..0..3....1..2..0
..3..3..0....2..1..3....0..1..2....3..0..0....3..1..2....2..2..2....2..3..1
CROSSREFS
Column 1 of A251652.
Sequence in context: A252071 A247263 A251652 * A259769 A238231 A008853
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 06 2014
STATUS
approved