login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055524
Longest other side of a Pythagorean triangle with n as length of one of the three sides (in fact n is a leg and a(n) the hypotenuse).
10
5, 5, 13, 10, 25, 17, 41, 26, 61, 37, 85, 50, 113, 65, 145, 82, 181, 101, 221, 122, 265, 145, 313, 170, 365, 197, 421, 226, 481, 257, 545, 290, 613, 325, 685, 362, 761, 401, 841, 442, 925, 485, 1013, 530, 1105, 577, 1201, 626, 1301, 677, 1405, 730, 1513, 785
OFFSET
3,1
FORMULA
a(n) = sqrt(n^2+A055523(n)^2). a(2k) = k^2+1, a(2k+1) = k^2+(k+1)^2.
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). G.f.: -x^3*(2*x^5+x^4-5*x^3-2*x^2+5*x+5) / ((x-1)^3*(x+1)^3). - Colin Barker, Sep 15 2014
a(n) = (3*n^2+6-(n^2-2)*(-1)^n)/8. - Luce ETIENNE, Jul 11 2015
MATHEMATICA
A055524[n_] := (3*n^2-(-1)^n*(n^2-2)+6)/8; Array[A055524, 100, 3] (* or *)
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {5, 5, 13, 10, 25, 17}, 100] (* Paolo Xausa, Feb 29 2024 *)
PROG
(PARI) Vec(-x^3*(2*x^5+x^4-5*x^3-2*x^2+5*x+5)/((x-1)^3*(x+1)^3) + O(x^100)) \\ Colin Barker, Sep 15 2014
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, May 22 2000
STATUS
approved