|
|
A009112
|
|
Areas of Pythagorean triangles: numbers which can be the area of a right triangle with integer sides.
|
|
25
|
|
|
6, 24, 30, 54, 60, 84, 96, 120, 150, 180, 210, 216, 240, 270, 294, 330, 336, 384, 480, 486, 504, 540, 546, 600, 630, 720, 726, 750, 756, 840, 864, 924, 960, 990, 1014, 1080, 1176, 1224, 1320, 1344, 1350, 1386, 1470, 1500, 1536, 1560, 1620, 1710, 1716, 1734, 1890
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Number of terms < 10^k for increasing values of k: 1, 7, 34, 150, 636, 2536, 9757, 35987, 125350, 407538, ..., .
All terms are divisible by 6.
|
|
LINKS
|
B. Miller, Nasty Numbers, The Mathematics Teacher 73 (1980), page 649.
|
|
EXAMPLE
|
30 belongs to the sequence as the area of the triangle (5,12,13) is 30.
6 is in the sequence because it is the area of the 3-4-5 triangle.
|
|
MAPLE
|
N:= 10^4: # to get all entries <= N
A:= {}:
for t from 1 to floor(sqrt(2*N)) do
F:= select(f -> f[2]::odd, ifactors(2*t)[2]);
d:= mul(f[1], f=F);
for e from ceil(sqrt(t/d)) do
s:= d*e^2;
r:= sqrt(2*t*s);
a:= (r+s)*(r+t)/2;
if a > N then break fi;
A:= A union {a};
od
od:
A;
# if using Maple 11 or earlier, uncomment the next line
|
|
MATHEMATICA
|
lst = {}; Do[ If[ IntegerQ[c = Sqrt[a^2 + b^2]], AppendTo[lst, a*b/2]; lst = Union@ lst], {a, 4, 180}, {b, a - 1, Floor[ Sqrt[a]], -1}]; Take[lst, 51] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2010 *)
|
|
PROG
|
(PARI) is_A009112(n)={ my(N=1+#n=divisors(2*n)); for( i=1, N\2, issquare(n[i]^2+n[N-i]^2) & return(1)) } \\ M. F. Hasler, Dec 09 2010
(Sage) is_A009112 = lambda n: any(is_square(a**2+(2*n/a)**2) for a in divisors(2*n)) # D. S. McNeil, Dec 09 2010
|
|
CROSSREFS
|
See A256418 for the numbers 4*a(n).
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|