The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A009112 Areas of Pythagorean triangles: numbers which can be the area of a right triangle with integer sides. 28
 6, 24, 30, 54, 60, 84, 96, 120, 150, 180, 210, 216, 240, 270, 294, 330, 336, 384, 480, 486, 504, 540, 546, 600, 630, 720, 726, 750, 756, 840, 864, 924, 960, 990, 1014, 1080, 1176, 1224, 1320, 1344, 1350, 1386, 1470, 1500, 1536, 1560, 1620, 1710, 1716, 1734, 1890 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Number of terms < 10^k for increasing values of k: 1, 7, 34, 150, 636, 2536, 9757, 35987, 125350, 407538, ..., . All terms are divisible by 6. Also positive integers m with four (or more) different divisors (p, q, r, s) such that m = p*q = r*s and s = p+q+r. - Jose Aranda, Jun 28 2023 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 Ron Knott, Pythagorean Triangles B. Miller, Nasty Numbers, The Mathematics Teacher 73 (1980), page 649. Supriya Mohanty and S. P. Mohanty, Pythagorean Numbers, Fibonacci Quarterly 28 (1990), 31-42. EXAMPLE 30 belongs to the sequence as the area of the triangle (5,12,13) is 30. 6 is in the sequence because it is the area of the 3-4-5 triangle. MAPLE N:= 10^4: # to get all entries <= N A:= {}: for t from 1 to floor(sqrt(2*N)) do F:= select(f -> f[2]::odd, ifactors(2*t)[2]); d:= mul(f[1], f=F); for e from ceil(sqrt(t/d)) do s:= d*e^2; r:= sqrt(2*t*s); a:= (r+s)*(r+t)/2; if a > N then break fi; A:= A union {a}; od od: A; # if using Maple 11 or earlier, uncomment the next line # sort(convert(A, list)); # Robert Israel, Apr 06 2015 MATHEMATICA lst = {}; Do[ If[ IntegerQ[c = Sqrt[a^2 + b^2]], AppendTo[lst, a*b/2]; lst = Union@ lst], {a, 4, 180}, {b, a - 1, Floor[ Sqrt[a]], -1}]; Take[lst, 51] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2010 *) g@A_ := With[{div = Divisors@(2*A)}, AnyTrue[Sqrt@(Plus@@({#, 2*A/#}^2))& /@Take[div, Floor[(Length@div)/2]], IntegerQ]]; Select[Range@5000, g@# &] (* Hans Rudolf Widmer, Sep 25 2023 *) PROG (PARI) is_A009112(n)={ my(N=1+#n=divisors(2*n)); for( i=1, N\2, issquare(n[i]^2+n[N-i]^2) & return(1)) } \\ M. F. Hasler, Dec 09 2010 (Sage) is_A009112 = lambda n: any(is_square(a**2+(2*n/a)**2) for a in divisors(2*n)) # D. S. McNeil, Dec 09 2010 CROSSREFS Union of A009111, A009127, A024365, A177021. A073120 is a subsequence. See A256418 for the numbers 4*a(n). Sequence in context: A185210 A046131 A009111 * A057101 A057228 A334788 Adjacent sequences: A009109 A009110 A009111 * A009113 A009114 A009115 KEYWORD nonn,easy AUTHOR David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 00:08 EDT 2024. Contains 375146 sequences. (Running on oeis4.)