login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185210 Areas A of the triangles such that A, the sides, the inradius and the radius of the three excircles are integers. 6
6, 24, 30, 42, 48, 54, 60, 84, 96, 108, 120, 144, 150, 156, 168, 180, 192, 210, 216, 240, 270, 294, 330, 336, 378, 384, 390, 420, 432, 462, 480, 486, 504, 510, 528, 540, 546, 576, 594, 600, 624, 630, 672, 714, 720, 726, 750, 756, 768, 810, 840, 864, 924, 930 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Theorem 1: Consider a triangle whose area A, sides (a,b,c), inradius r and the radius of whose three excircles r1, r2, r3 are integers. Then the sum a^2 + b^2 + c^2 + r^2 + r1^2 + r2^2 + r3^2 is a perfect square equal to 16R^2, where R is the circumradius.
Proof: (r1 + r2 + r3 - r)^2 = r1^2 + r2^2 + r3^2 + r^2 + a^2 + b^2 + c^2 because: r1*r2 + r2*r3 + r3*r1 - r*r1 - r*r2 - r*r3 = (a^2 + b^2 + c^2)/2 (formula from Feuerbach - see the link). But r1 + r2 + r3 - r = 4*R (see the reference: Johnson 1929, pp. 190-191), hence the result. Remark: R is not necessarily an integer; for example, at a(1) = 6 with (a,b,c) = (3, 4, 5) we obtain r = 1, r1 = 2, r2 = 3, r3 = 6 and R = 5/2. Then 3^2 + 4^2 + 5^2 + 1^2 + 2^2 + 3^2 + 6^2 = 16*(5/2)^2 = 10^2. Nevertheless, if R is integer, then r, r1, r2 and r3 are necessarily integers (see the following theorem). The subset of a(n) with R integer is A208984 = {24, 96, 120, 168, 216, 240, 336, 384, 432, 480, 600, ...}
Theorem 2: Consider a triangle whose area A, sides (a,b,c) and circumradius R are integers. Then the inradius r and the radius of the three excircles r1, r2, r3 are also integers.
Proof: Let s be the semiperimeter, let s*A = r1*r2*r3 be integer, and let r*r1*r2*r3 = A^2 also be integer => r is integer. r1 = A/(s-a), r2 = A/(s-b), r3 = A/(s-c) => r1*r2 = s*(s-c), r1*r3=s*(s-b), r2*r3 = s*(s-a) are integers. Because r1*r2*r3 is integer => r1, r2, r3 are integers.
REFERENCES
Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.
Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, 1929.
LINKS
Eric W. Weisstein's World of Mathematics, Excircles
Eric W. Weisstein's World of Mathematics, Exradius
Eric W. Weisstein's World of Mathematics, Inradius
FORMULA
A = sqrt(s*(p-a)*(s-b)*(s-c)) with s = (a+b+c)/2 (Heron's formula);
the inradius is r=A/s;
the exradii of the excircles are r1 = 2*A/(-a+b+c), x2 = 2*A*b/(a-b+c), and x3 = 2*A*c/(a+b-c).
EXAMPLE
24 is in the sequence because for (a, b, c) = (6, 8, 10) => s =(6+8+10)/2 = 12; A = sqrt(12(12-6)(12-8)(12-10)) = sqrt(576) = 24; r = A/s = 2; r1 = 2*24(-6+8+10) = 4; r2 = 2*24(6-8+10) = 6; r3 = 2*24(6+8-10) = 12.
MATHEMATICA
nn = 1000; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]] && IntegerQ[Sqrt[area2]/s] && IntegerQ[2*Sqrt[area2]/(-a+b+c)] && IntegerQ[2*Sqrt[area2]/(a-b+c)] && IntegerQ[2*Sqrt[area2]/(a+b-c)], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
CROSSREFS
Sequence in context: A234648 A110926 A131906 * A046131 A009111 A009112
KEYWORD
nonn
AUTHOR
Michel Lagneau, Mar 21 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 13:51 EDT 2024. Contains 371914 sequences. (Running on oeis4.)