login
A185210
Areas A of the triangles such that A, the sides, the inradius and the radius of the three excircles are integers.
6
6, 24, 30, 42, 48, 54, 60, 84, 96, 108, 120, 144, 150, 156, 168, 180, 192, 210, 216, 240, 270, 294, 330, 336, 378, 384, 390, 420, 432, 462, 480, 486, 504, 510, 528, 540, 546, 576, 594, 600, 624, 630, 672, 714, 720, 726, 750, 756, 768, 810, 840, 864, 924, 930
OFFSET
1,1
COMMENTS
Theorem 1: Consider a triangle whose area A, sides (a,b,c), inradius r and the radius of whose three excircles r1, r2, r3 are integers. Then the sum a^2 + b^2 + c^2 + r^2 + r1^2 + r2^2 + r3^2 is a perfect square equal to 16R^2, where R is the circumradius.
Proof: (r1 + r2 + r3 - r)^2 = r1^2 + r2^2 + r3^2 + r^2 + a^2 + b^2 + c^2 because: r1*r2 + r2*r3 + r3*r1 - r*r1 - r*r2 - r*r3 = (a^2 + b^2 + c^2)/2 (formula from Feuerbach - see the link). But r1 + r2 + r3 - r = 4*R (see the reference: Johnson 1929, pp. 190-191), hence the result. Remark: R is not necessarily an integer; for example, at a(1) = 6 with (a,b,c) = (3, 4, 5) we obtain r = 1, r1 = 2, r2 = 3, r3 = 6 and R = 5/2. Then 3^2 + 4^2 + 5^2 + 1^2 + 2^2 + 3^2 + 6^2 = 16*(5/2)^2 = 10^2. Nevertheless, if R is integer, then r, r1, r2 and r3 are necessarily integers (see the following theorem). The subset of a(n) with R integer is A208984 = {24, 96, 120, 168, 216, 240, 336, 384, 432, 480, 600, ...}
Theorem 2: Consider a triangle whose area A, sides (a,b,c) and circumradius R are integers. Then the inradius r and the radius of the three excircles r1, r2, r3 are also integers.
Proof: Let s be the semiperimeter, let s*A = r1*r2*r3 be integer, and let r*r1*r2*r3 = A^2 also be integer => r is integer. r1 = A/(s-a), r2 = A/(s-b), r3 = A/(s-c) => r1*r2 = s*(s-c), r1*r3=s*(s-b), r2*r3 = s*(s-a) are integers. Because r1*r2*r3 is integer => r1, r2, r3 are integers.
REFERENCES
Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.
Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, 1929.
LINKS
Eric W. Weisstein's World of Mathematics, Excircles
Eric W. Weisstein's World of Mathematics, Exradius
Eric W. Weisstein's World of Mathematics, Inradius
FORMULA
A = sqrt(s*(p-a)*(s-b)*(s-c)) with s = (a+b+c)/2 (Heron's formula);
the inradius is r=A/s;
the exradii of the excircles are r1 = 2*A/(-a+b+c), x2 = 2*A*b/(a-b+c), and x3 = 2*A*c/(a+b-c).
EXAMPLE
24 is in the sequence because for (a, b, c) = (6, 8, 10) => s =(6+8+10)/2 = 12; A = sqrt(12(12-6)(12-8)(12-10)) = sqrt(576) = 24; r = A/s = 2; r1 = 2*24(-6+8+10) = 4; r2 = 2*24(6-8+10) = 6; r3 = 2*24(6+8-10) = 12.
MATHEMATICA
nn = 1000; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]] && IntegerQ[Sqrt[area2]/s] && IntegerQ[2*Sqrt[area2]/(-a+b+c)] && IntegerQ[2*Sqrt[area2]/(a-b+c)] && IntegerQ[2*Sqrt[area2]/(a+b-c)], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Mar 21 2012
STATUS
approved