The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188158 Area A of the triangles such that A and the sides are integers. 61
 6, 12, 24, 30, 36, 42, 48, 54, 60, 66, 72, 84, 90, 96, 108, 114, 120, 126, 132, 144, 150, 156, 168, 180, 192, 198, 204, 210, 216, 234, 240, 252, 264, 270, 288, 294, 300, 306, 324, 330, 336, 360, 378, 384, 390, 396, 408, 420, 432, 456, 462, 468, 480, 486, 504, 510, 522, 528 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. A given area often corresponds to more than one triangle; for example, a(9) = 60 for the triangles (a,b,c) = (6,25,29), (8,17,15), (13,13,10) and (13,13,24). If only primitive integer triangles (that is, the lengths of the sides are coprime) are considered, then the possible areas are 6 times the terms in A083875. - T. D. Noe, Mar 23 2011 LINKS Giovanni Resta, Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, Triangle Wikipedia, Heronian triangle EXAMPLE a(3) = 24 because the area of the triangle whose sides are 4, 15, 13 is given by sqrt(p(p-4)(p-15)(p-13)) = 24, where p = (4 + 15 + 13)/2 = 16. MAPLE # storage of areas in T(i) T:=array(1..4000):nn:=100:k:=1:for a from 1 to nn do: for b from 1 to nn do: for c from 1 to nn do: p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c): if x>0 then x1:=abs(x):s:=sqrt(x1) :else fi:if s=floor(s) then T[k]:=s:k:=k+1:else fi:od:od:od: # sort of T(i) for jj from 1 to k-1 do: ii:=jj:for k1 from ii+1 to k-1 do:if T[ii]>T[k1] then ii:=k1:else fi:od: m:=T[jj]:T[jj]:=T[ii]:T[ii]:=m:od:liste:=convert(T, set):print(liste): # second program: isA188158 := proc(A::integer) local Asqr, s, a, b, c ; Asqr := A^2 ; for s in numtheory[divisors](Asqr) do if s^2> A then for a from 1 to s-1 do if modp(Asqr, s-a) = 0 then for b from a to s-1 do c := 2*s-a-b ; if s*(s-a)*(s-b)*(s-c) = Asqr then return true ; end if; end do: end if; end do: end if; end do: false ; end proc: for n from 3 to 600 do if isA188158(n) then printf("%d, \n", n) ; end if; end do: # R. J. Mathar, May 02 2018 MATHEMATICA nn = 528; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst] (* T. D. Noe, Mar 23 2011 *) CROSSREFS Cf. A007237, A009112, A024153, A024365, A051516, A051584, A051585, A055592, A055593, A055594, A055595. Sequence in context: A074902 A096366 A247145 * A061822 A226453 A307225 Adjacent sequences: A188155 A188156 A188157 * A188159 A188160 A188161 KEYWORD nonn AUTHOR Michel Lagneau, Mar 22 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 12:21 EST 2023. Contains 359872 sequences. (Running on oeis4.)