login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188158 Area A of the triangles such that A and the sides are integers. 61
6, 12, 24, 30, 36, 42, 48, 54, 60, 66, 72, 84, 90, 96, 108, 114, 120, 126, 132, 144, 150, 156, 168, 180, 192, 198, 204, 210, 216, 234, 240, 252, 264, 270, 288, 294, 300, 306, 324, 330, 336, 360, 378, 384, 390, 396, 408, 420, 432, 456, 462, 468, 480, 486, 504, 510, 522, 528 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. A given area often corresponds to more than one triangle; for example, a(9) = 60 for the triangles (a,b,c) = (6,25,29), (8,17,15), (13,13,10) and (13,13,24).

If only primitive integer triangles (that is, the lengths of the sides are coprime) are considered, then the possible areas are 6 times the terms in A083875. - T. D. Noe, Mar 23 2011

LINKS

Giovanni Resta, Table of n, a(n) for n = 1..10000

Eric Weisstein's World of Mathematics, Triangle

Wikipedia, Heronian triangle

EXAMPLE

a(3) = 24 because the area of the triangle whose sides are 4, 15, 13 is given by sqrt(p(p-4)(p-15)(p-13)) = 24, where p = (4 + 15 + 13)/2 = 16.

MAPLE

# storage of areas in T(i)

T:=array(1..4000):nn:=100:k:=1:for a from 1

to nn do: for b from 1 to nn do: for c from 1 to nn do: p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c): if x>0 then x1:=abs(x):s:=sqrt(x1) :else fi:if s=floor(s) then T[k]:=s:k:=k+1:else

fi:od:od:od:

# sort of T(i)

for jj from 1 to k-1 do: ii:=jj:for k1 from ii+1 to k-1 do:if T[ii]>T[k1] then ii:=k1:else fi:od: m:=T[jj]:T[jj]:=T[ii]:T[ii]:=m:od:liste:=convert(T, set):print(liste):

# second program:

isA188158 := proc(A::integer)

local Asqr, s, a, b, c ;

Asqr := A^2 ;

for s in numtheory[divisors](Asqr) do

if s^2> A then

for a from 1 to s-1 do

if modp(Asqr, s-a) = 0 then

for b from a to s-1 do

c := 2*s-a-b ;

if s*(s-a)*(s-b)*(s-c) = Asqr then

return true ;

end if;

end do:

end if;

end do:

end if;

end do:

false ;

end proc:

for n from 3 to 600 do

if isA188158(n) then

printf("%d, \n", n) ;

end if;

end do: # R. J. Mathar, May 02 2018

MATHEMATICA

nn = 528; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst] (* T. D. Noe, Mar 23 2011 *)

CROSSREFS

Cf. A007237, A009112, A024153, A024365, A051516, A051584, A051585, A055592, A055593, A055594, A055595.

Sequence in context: A074902 A096366 A247145 * A061822 A226453 A307225

Adjacent sequences: A188155 A188156 A188157 * A188159 A188160 A188161

KEYWORD

nonn

AUTHOR

Michel Lagneau, Mar 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 12:21 EST 2023. Contains 359872 sequences. (Running on oeis4.)