login
A051585
Number of integer-sided triangles of area 6n.
6
1, 2, 0, 2, 1, 2, 1, 2, 1, 4, 1, 1, 0, 4, 2, 2, 0, 2, 1, 4, 3, 1, 0, 2, 1, 2, 0, 4, 0, 2, 0, 2, 1, 1, 6, 3, 0, 0, 1, 5, 0, 3, 0, 3, 2, 0, 0, 2, 1, 4, 1, 0, 0, 2, 4, 8, 0, 0, 0, 5, 0, 0, 1, 2, 1, 3, 0, 1, 0, 15, 0, 2, 0, 0, 0, 4, 2, 1, 0, 5, 1, 0, 0, 6, 2, 0, 1, 3, 0, 4, 3, 0, 0, 0, 1, 2, 0, 2, 1, 2, 0, 0, 0
OFFSET
1,2
COMMENTS
If integer-sided triangle has integer area, area is divisible by 6.
LINKS
PROG
(PARI) a(n)=sum(z=sqrtint(sqrtint(192*n^2)-1)+1, sqrtint(9*(64*n^2+5)\20), sum(y=z\2+1, z, my(t=(y*z)^2-(12*n)^2, x); if(issquare(t, &t), (issquare(y^2+z^2-2*t, &x) && x<=y) + (t && issquare(y^2+z^2+2*t, &x) && x<=y), 0))) \\ Charles R Greathouse IV, Jun 27 2013
CROSSREFS
Sequence in context: A107455 A039701 A025822 * A049115 A294204 A329697
KEYWORD
nonn
STATUS
approved