The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A107455 Number of nonisomorphic generalized Petersen graphs P(n,k) with girth 6 on n vertices for 1<=k<=Floor[(n-1)/2]. 0
 1, 0, 1, 1, 1, 1, 2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 8,7 COMMENTS The generalized Petersen graph P(n,k) is a graph with vertex set V(P(n,k)) = {u_0,u_1,...,u_{n-1},v_0,v_1,...,v_{n-1}} and edge set E(P(n,k)) = {u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i=0,...,n-1}, where the subscripts are to be read modulo n. REFERENCES I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2. LINKS Marko Boben, Tomaz Pisanski, Arjana Zitnik, I-graphs and the corresponding configurations, Preprint series (University of Ljubljana, IMFM), Vol. 42 (2004), 939 (ISSN 1318-4865). M. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969), 152-164. EXAMPLE A generalized Petersen graph P(n,k) has girth 6 if and only if it has girth more than 5 and (n=6k or k=3 or 2k=n-2 or 3k=n+1 or 3k=n-1) The smallest generalized Petersen graph with girth 6 is P(8,3) CROSSREFS Cf. A077105, A107452-A107460. Sequence in context: A238417 A117929 A306439 * A039701 A025822 A051585 Adjacent sequences:  A107452 A107453 A107454 * A107456 A107457 A107458 KEYWORD nonn AUTHOR Marko Boben (Marko.Boben(AT)fmf.uni-lj.si), Tomaz Pisanski and Arjana Zitnik (Arjana.Zitnik(AT)fmf.uni-lj.si), May 26 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 04:01 EDT 2021. Contains 346367 sequences. (Running on oeis4.)