login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107458
Expansion of g.f.: (1-x^2-x^3)/( (1+x)*(1-x-x^3) ).
5
1, 0, 0, 0, 1, 0, 1, 1, 2, 2, 4, 5, 8, 11, 17, 24, 36, 52, 77, 112, 165, 241, 354, 518, 760, 1113, 1632, 2391, 3505, 5136, 7528, 11032, 16169, 23696, 34729, 50897, 74594, 109322, 160220, 234813, 344136, 504355, 739169, 1083304, 1587660, 2326828, 3410133, 4997792, 7324621
OFFSET
0,9
COMMENTS
The sequence can be interpreted as the top-left entry of the n-th power of a 4 X 4 (0,1) matrix. There are 12 different choices (out of 2^16) for that (0,1) matrix. - R. J. Mathar, Mar 19 2014
LINKS
C. Kenneth Fan, Structure of a Hecke algebra quotient, J. Amer. Math. Soc. 10 (1997), no. 1, 139-167. [Page 156, f^2_n.]
Renata Passos Machado Vieira, and Francisco Regis Vieira Alves, Sequences of Tridovan and their identities, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 3, 185-197. Sequence (T_n) is a subsequence of this sequence.
Renata Passos Machado Vieira, Francisco Regis Vieira Alves, and Paula Maria Machado Cruz Catarino, A note on the Tetrarrin sequence, Braz. Elect. J. Math. (2024).
FORMULA
a(n) = a(n-2) + a(n-3) + a(n-4); a(0)=1, a(1)=0, a(2)=0, a(3)=0. - Harvey P. Dale, Jun 20 2011
a(n) + a(n-1) = A000930(n-4). - R. J. Mathar, Mar 19 2014
MAPLE
seq(coeff(series( (1-x^2-x^3)/( (1+x)*(1-x-x^3) ), x, n+1), x, n), n = 0..50); # G. C. Greubel, Jan 03 2020
MATHEMATICA
CoefficientList[Series[(1-x^2-x^3)/(1-x^2-x^3-x^4), {x, 0, 50}], x] (* or *) LinearRecurrence[{0, 1, 1, 1}, {1, 0, 0, 0}, 50] (* Harvey P. Dale, Jun 20 2011 *)
PROG
(Haskell)
a107458 n = a107458_list !! n
a107458_list = 1 : 0 : 0 : 0 : zipWith (+) a107458_list
(zipWith (+) (tail a107458_list) (drop 2 a107458_list))
-- Reinhard Zumkeller, Mar 23 2012
(PARI) my(x='x+O('x^50)); Vec((1-x^2-x^3)/((1+x)*(1-x-x^3))) \\ G. C. Greubel, Apr 27 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!(1-x^2-x^3)/( (1+x)*(1-x-x^3))); // Marius A. Burtea, Jan 02 2020
(Sage)
def A107458_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x^2-x^3)/((1+x)*(1-x-x^3)) ).list()
A107458_list(50) # G. C. Greubel, Jan 03 2020
(GAP) a:=[1, 0, 0, 0];; for n in [5..50] do a[n]:=a[n-2]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jan 03 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 08 2008
STATUS
approved