login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274142
Number of integers in n-th generation of tree T(1/2) defined in Comments.
30
1, 1, 1, 2, 2, 4, 5, 8, 11, 17, 25, 37, 54, 81, 119, 177, 261, 388, 574, 851, 1260, 1868, 2767, 4101, 6077, 9006, 13347, 19781, 29315, 43448, 64392, 95436, 141444, 209636, 310705, 460501, 682519, 1011581, 1499295, 2222155, 3293534, 4881472, 7235018, 10723311, 15893460, 23556367, 34913897, 51747400
OFFSET
0,4
COMMENTS
Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*. Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2,x}, g(3) = {3,2x,x+1,x^2}, etc. Let T(r) be the tree obtained by substituting r for x.
Guide to related sequences:
r sequence
-1/2 A274147
-1/3 A274148
-1/4 A274149
-2/3 A274150
-3/4 A274151
-3/2 A274154
-5/2 A274155
2^(1/2) A000045 (Fibonacci numbers)
2^(1/3) A000930
2^(1/4) A003269
2^(-1/2) A274156
3^(-1/2) A274157
2^(-1/3) A274158
3^(-1/3) A274159
(-1+3i)/2 A274168
EXAMPLE
If r = 1/2, then g(3) = {3,2r,r+1, r^2}, in which the integers are 3 and 1, so that a(3) = 2.
MATHEMATICA
z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]];
u = Table[t[[k]] /. x -> 1/2, {k, 1, z}];
Table[Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}]
(* second program: *)
T[0] = {0}; T[n_] := T[n] = Complement[Join[T[n-1]+1, x*T[n-1]], T[n-1]]; Reap[For[n = 0, n <= 25, n++, cnt = Count[T[n] /. x -> 1/2, _Integer]; Print[n, " ", cnt]; Sow[cnt]]][[2, 1]] (* Jean-François Alcover, Jun 14 2016 *)
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 11 2016
EXTENSIONS
More terms from Jean-François Alcover, Jun 14 2016
More terms from Kenny Lau, Jul 04 2016
STATUS
approved