login
A274153
Number of integers in n-th generation of tree T(5/2) defined in Comments.
1
1, 1, 1, 2, 2, 4, 5, 8, 12, 19, 27, 41, 60, 90, 136, 204, 306, 461, 692, 1036, 1557, 2330, 3498, 5247, 7872, 11803, 17715, 26558, 39851, 59781, 89651, 134482, 201736, 302605, 453892, 680800, 1021307, 1531944, 2297678, 3446694, 5170101, 7754719, 11632249, 17448162, 26172247, 39258668, 58886868, 88331299, 132497660
OFFSET
0,4
COMMENTS
Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*. Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2,x}, g(3) = {3,2x,x+1,x^2}, etc. Let T(r) be the tree obtained by substituting r for x.
See A274142 for a guide to related sequences.
EXAMPLE
For r = 5/2, we have g(3) = {3,2r,r+1, r^2}, in which the number of integers is a(3) = 2.
MATHEMATICA
z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]];
u = Table[t[[k]] /. x -> 5/2, {k, 1, z}]; Table[Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}]
CROSSREFS
Cf. A274142.
Sequence in context: A094992 A172128 A274154 * A079501 A093335 A093333
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 12 2016
EXTENSIONS
More terms from Kenny Lau, Jul 02 2016
STATUS
approved