login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060280
Number of orbits of length n under the map whose periodic points are counted by A001350.
11
1, 0, 1, 1, 2, 2, 4, 5, 8, 11, 18, 25, 40, 58, 90, 135, 210, 316, 492, 750, 1164, 1791, 2786, 4305, 6710, 10420, 16264, 25350, 39650, 61967, 97108, 152145, 238818, 374955, 589520, 927200, 1459960, 2299854, 3626200, 5720274, 9030450, 14263078, 22542396
OFFSET
1,5
COMMENTS
Euler transform is A000045. 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)^2*(1-x^6)^2*...) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + ... - Michael Somos, Jan 28 2003
LINKS
Michael Baake, Joachim Hermisson, and Peter Pleasants, The torus parametrization of quasiperiodic LI-classes J. Phys. A 30 (1997), no. 9, 3029-3056.
Michael Baake, John A.G. Roberts, and Alfred Weiss, Periodic orbits of linear endomorphisms on the 2-torus and its lattices, arXiv:0808.3489 [math.DS], Aug 26, 2008. [Jonathan Vos Post, Aug 27 2008]
Larry Ericksen, Primality Testing and Prime Constellations, Šiauliai Mathematical Seminar, Vol. 3 (11), 2008. Mentions this sequence.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
FORMULA
a(n) = (1/n)* Sum_{d|n} mu(d)*A001350(n/d).
a(n) = A006206(n) except for n=2. - Michael Somos, Jan 28 2003
a(n) = A031367(n)/n. - R. J. Mathar, Jul 15 2016
G.f.: Sum_{k>=1} mu(k)*log(1 + x^k/(1 - x^k - x^(2*k)))/k. - Ilya Gutkovskiy, May 18 2019
EXAMPLE
a(7)=4 since the 7th term of A001350 is 29 and the 1st is 1, so there are (29-1)/7 = 4 orbits of length 7.
x + x^3 + x^4 + 2*x^5 + 2*x^6 + 4*x^7 + 5*x^8 + 8*x^9 + 11*x^10 + 18*x^11 + ...
MAPLE
A060280 := proc(n)
add( numtheory[mobius](d)*A001350(n/d), d=numtheory[divisors](n)) ;
%/n;
end proc: # R. J. Mathar, Jul 15 2016
MATHEMATICA
A001350[n_] := LucasL[n] - (-1)^n - 1;
a[n_] := (1/n)*DivisorSum[n, MoebiusMu[#]*A001350[n/#]& ];
Array[a, 50] (* Jean-François Alcover, Nov 23 2017 *)
PROG
(PARI) {a(n) = if( n<3, n==1, sumdiv( n, d, moebius(n/d) * (fibonacci(d - 1) + fibonacci(d + 1))) / n)} /* Michael Somos, Jan 28 2003 */
(Magma)
A060280:= func< n | n le 2 select 2-n else (&+[Lucas(d)*MoebiusMu(Floor(n/d)) : d in Divisors(n)])/n >;
[A060280(n): n in [1..50]]; // G. C. Greubel, Nov 06 2024
(SageMath)
A000032=BinaryRecurrenceSequence(1, 1, 2, 1)
def A060280(n): return sum(A000032(k)*moebius(n/k) for k in (1..n) if (k).divides(n))//n - int(n==2)
[A060280(n) for n in range(1, 41)] # G. C. Greubel, Nov 06 2024
CROSSREFS
First column of A348422.
Sequence in context: A107458 A274142 A006206 * A095719 A153952 A050364
KEYWORD
easy,nonn
AUTHOR
Thomas Ward, Mar 29 2001
STATUS
approved