OFFSET
1,14
COMMENTS
A triple (a,b,c) as described in the name cannot have c prime. - David A. Corneth, Aug 01 2018
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1500 terms from Hugo Pfoertner)
IBM Research, Ponder This Challenge - July 2018.
John B. Kelly, Partitions with equal products, Proc. Amer. Math. Soc. 15 (1964), 987-990
John B. Kelly, Partitions with equal products. II, Proc. Amer. Math. Soc. 107 (1989), 887-893
FORMULA
a(n) = Sum_{k>=2} A317578(n,k). - Alois P. Heinz, Aug 01 2018
EXAMPLE
(14 = 6+6+2 = 8+3+3, 72 = 6*6*2 = 8*3*3); (14 = 8+5+1 = 10+2+2, 40 = 8*5*1 = 10*2*2); 14 has two "m" variables. so a(14)=2.
MATHEMATICA
a[n_] := Count[ Tally[ Times @@@ IntegerPartitions[n, {3}]], {m_, c_} /; c>1]; Array[a, 84] (* Giovanni Resta, Jul 27 2018 *)
PROG
(PARI) a(n)={my(M=Map()); for(i=n\3, n, for(j=(n-i+1)\2, min(n-1-i, i), my(k=n-i-j); my(m=i*j*k); my(z); mapput(M, m, if(mapisdefined(M, m, &z), z + 1, 1)))); #select(z->z>=2, if(#M, Mat(M)[, 2], []))} \\ Andrew Howroyd, Jul 27 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Naohiro Nomoto, Mar 23 2001
EXTENSIONS
Description revised by David W. Wilson and Don Reble, Jun 04 2002
STATUS
approved