login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103277 Smallest i such that there exists j such that i = x + y + z, j = x*y*z has exactly n solutions in positive integers x <= y <= z. 7
3, 13, 39, 118, 185, 400, 511, 1022, 1287, 2574, 4279, 8558, 11777, 24377, 23554, 46111, 99085, 165490 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Least number k such that there exists n partitions of k into 3 parts each having the same product.

The greatest number k such that there exists n partitions of k into 3 parts each having the same product: 18, 102, 492, 1752, ...

The number of members in each "class" of the set having n partitions into 3 parts each having the same product: 12, 54, 147, 397, ....

LINKS

Table of n, a(n) for n=1..18.

EXAMPLE

3 = 1+1+1 & 1*1*1 = 1.

13 = 6+6+1 = 9+2+2 & 6*6*1 = 9*2*2 = 36.

39 = 20+15+4 = 24+10+5 = 25+8+6 & 20*15*4 = 24*10*5 = 25*8*6 = 1200.

118 = 54+50+14 = 63+40+15 = 70+30+18 = 72+25+21 & 54*50*14 = 63*40*15 = 70*30*18 = 72*25*21 = 37800.

185 = 90+84+11 = 110+63+12 = 126+44+15 = 132+35+18 = 135+28+22 & 90*84*11 = 110*63*12 = 126*44*15 = 132*35*18 = 135*28*22 = 83160.

400 = 196+180+24 = 245+128+27 = 252+120+28 = 270+98+32 = 280+84+36 = 288+70+42 & 196*180*24 = 245*128*27 = 252*120*28 = 270*98*32 = 280*84*36 = 288*70*42 = 846720.

511 = 260+216+35 = 280+195+36 = 315+156+40 = 325+144+42 = 336+130+45 = 360+91+60 = 364+75+72 & 260*216*35 = 280*195*36 = 315*156*40 = 325*144*42 = 336*130*45 = 360*91*60 = 364*75*72 = 1965600.

1022 = 520+432+70 = 560+390+72 = 630+312+80 = 650+288+84 = 672+260+90 = 675+256+91 = 720+182+120 = 728+150+144 & 520*432*70 = 560*390*72 = 630*312*80 = 650*288*84 = 672*260*90 = 675*256*91 = 720*182*120 = 728*150*144 = 15724800.

1287 = 600+588+99 = 648+539+100 = 720+462+105 = 770+405+112 = 825+336+126 = 840+315+132 = 880+245+162 = 882+240+165 = 891+200+196 & 600*588*99 = 648*539*100 = 720*462*105 = 770*405*112 = 825*336*126 = 840*315*132 = 880*245*162 = 882*240*165 = 891*200*196 = 34927200.

From Donovan Johnson, Mar 29 2010: (Start)

2574 = 198+1176+1200 = 200+1078+1296 = 210+924+1440 = 224+810+1540 = 231+768+1575 = 252+672+1650 = 264+630+1680 = 324+490+1760 = 330+480+1764 = 392+400+1782 & 198*1176*1200 = 200*1078*1296 = 210*924*1440 = 224*810*1540 = 231*768*1575 = 252*672*1650 = 264*630*1680 = 324*490*1760 = 330*480*1764 = 392*400*1782 = 279417600.

4279 = 378+1925+1976 = 380+1820+2079 = 385+1710+2184 = 399+1540+2340 = 429+1330+2520 = 440+1274+2565 = 504+1045+2730 = 532+975+2772 = 550+936+2793 = 637+792+2850 = 684+735+2860 & 378*1925*1976 = 380*1820*2079 = 385*1710*2184 = 399*1540*2340 = 429*1330*2520 = 440*1274*2565 = 504*1045*2730 = 532*975*2772 = 550*936*2793 = 637*792*2850 = 684*735*2860 = 1437836400.

8558 = 756+3850+3952 = 760+3640+4158 = 770+3420+4368 = 798+3080+4680 = 858+2660+5040 = 880+2548+5130 = 896+2475+5187 = 1008+2090+5460 = 1064+1950+5544 = 1100+1872+5586 = 1274+1584+5700 = 1368+1470+5720 & 756*3850*3952 = 760*3640*4158 = 770*3420*4368 = 798*3080*4680 = 858*2660*5040 = 880*2548*5130 = 896*2475*5187 = 1008*2090*5460 = 1064*1950*5544 = 1100*1872*5586 = 1274*1584*5700 = 1368*1470*5720 = 11502691200.

11777 = 171+5600+6006 = 175+4914+6688 = 198+3675+7904 = 224+3003+8550 = 228+2925+8624 = 240+2717+8820 = 245+2640+8892 = 385+1512+9880 = 416+1386+9975 = 462+1235+10080 = 540+1045+10192 = 600+936+10241 = 637+880+10260 & 171*5600*6006 = 175*4914*6688 = 198*3675*7904 = 224*3003*8550 = 228*2925*8624 = 240*2717*8820 = 245*2640*8892 = 385*1512*9880 = 416*1386*9975 = 462*1235*10080 = 540*1045*10192 = 600*936*10241 = 637*880*10260 = 5751345600.

24377 = 1196+11400+11781 = 1197+11220+11960 = 1232+9690+13455 = 1254+9200+13923 = 1360+7722+15295 = 1520+6435+16422 = 1547+6270+16560 = 1748+5304+17325 = 1890+4807+17680 = 1932+4680+17765 = 2244+3933+18200 = 2261+3900+18216 = 2448+3575+18354 = 2907+2990+18480 & 1196*11400*11781 = 1197*11220*11960 = 1232*9690*13455 = 1254*9200*13923 = 1360*7722*15295 = 1520*6435*16422 = 1547*6270*16560 = 1748*5304*17325 = 1890*4807*17680 = 1932*4680*17765 = 2244*3933*18200 = 2261*3900*18216 = 2448*3575*18354 = 2907*2990*18480 = 160626866400.

23554 = 342+11200+12012 = 350+9828+13376 = 351+9728+13475 = 396+7350+15808 = 448+6006+17100 = 456+5850+17248 = 480+5434+17640 = 490+5280+17784 = 665+3584+19305 = 770+3024+19760 = 832+2772+19950 = 924+2470+20160 = 1080+2090+20384 = 1200+1872+20482 = 1274+1760+20520 & 342*11200*12012 = 350*9828*13376 = 351*9728*13475 = 396*7350*15808 = 448*6006*17100 = 456*5850*17248 = 480*5434*17640 = 490*5280*17784 = 665*3584*19305 = 770*3024*19760 = 832*2772*19950 = 924*2470*20160 = 1080*2090*20384 = 1200*1872*20482 = 1274*1760*20520 = 46010764800.

(End)

From Duncan Moore, Sep 02 2017: (Start)

46111 = 4446+20160+21505 = 4455+19760+21896 = 4576+17595+23940 = 4680+16560+24871 = 4725+16192+25194 = 4807+15600+25704 = 4928+14858+26325 = 5100+13984+27027 = 5187+13600+27324 = 5520+12376+28215 = 5610+12096+28405 = 5712+11799+28600 = 6270+10465+29376 = 7360+8721+30030 = 7735+8280+30096 = 7904+8100+30107 & 4446*20160*21505 = 4455*19760*21896 = 4576*17595*23940 = 4680*16560*24871 = 4725*16192*25194 = 4807*15600*25704 = 4928*14858*26325 = 5100*13984*27027 = 5187*13600*27324 = 5520*12376*28215 = 5610*12096*28405 = 5712*11799*28600 = 6270*10465*29376 = 7360*8721*30030 = 7735*8280*30096 = 7904*8100*30107 = 1927522396800.

99085 = 3770+47120+48195 = 3780+45240+50065 = 3952+37758+57375 = 3978+37107+58000 = 4176+33250+61659 = 4199+32886+62000 = 4216+32625+62244 = 4495+29070+65520 = 4500+29016+65569 = 4914+25296+68875 = 5320+22620+71145 = 7280+15390+76415 = 7395+15120+76570 = 7905+14040+77140 = 8370+13195+77520 = 9367+11718+78000 = 9945+11020+78120 & 3770*47120*48195 = 3780*45240*50065 = 3952*37758*57375 = 3978*37107*58000 = 4176*33250*61659 = 4199*32886*62000 = 4216*32625*62244 = 4495*29070*65520 = 4500*29016*65569 = 4914*25296*68875 = 5320*22620*71145 = 7280*15390*76415 = 7395*15120*76570 = 7905*14040*77140 = 8370*13195*77520 = 9367*11718*78000 = 9945*11020*78120 = 8561475468000.

165490 = 14000+72488+79002 = 14022+71500+79968 = 14080+69615+81795 = 14280+65520+85690 = 14432+63308+87750 = 14820+59040+91630 = 14896+58344+92250 = 16236+49504+99750 = 16380+48790+100320 = 16830+46740+101920 = 17290+44880+103320 = 17589+43776+104125 = 18720+40180+106590 = 19152+39000+107338 = 20090+36720+108680 = 21648+33592+110250 = 23940+30030+111520 = 25840+27720+111930 & 14000*72488*79002 = 14022*71500*79968 = 14080*69615*81795 = 14280*65520*85690 = 14432*63308*87750 = 14820*59040*91630 = 14896*58344*92250 = 16236*49504*99750 = 16380*48790*100320 = 16830*46740*101920 = 17290*44880*103320 = 17589*43776*104125 = 18720*40180*106590 = 19152*39000*107338 = 20090*36720*108680 = 21648*33592*110250 = 23940*30030*111520 = 25840*27720*111930 = 80173757664000

(End)

MATHEMATICA

tanya[n_] := tanya[n] = Max[Length /@ Split[ Sort[Times @@@ Partition[Last /@ Flatten[ FindInstance[a + b + c == n && a >= b >= c > 0, {a, b, c}, Integers, Round[n^2/12]]], 3]]]];

CROSSREFS

Cf. A060277, A119028, A119646, A317578.

See A103278 for least j associated with i = A103277(n).

Sequence in context: A103657 A320661 A122504 * A166897 A167910 A147042

Adjacent sequences:  A103274 A103275 A103276 * A103278 A103279 A103280

KEYWORD

nonn,more

AUTHOR

David W. Wilson, Jan 27 2005

EXTENSIONS

Additional comments and examples from Joseph Biberstine (jrbibers(AT)indiana.edu) and Robert G. Wilson v, Jul 27 2006

Edited by N. J. A. Sloane, Apr 29 2007

a(10)-a(15) from Donovan Johnson, Mar 29 2010

a(16)-a(18) from Duncan Moore, Sep 02 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 01:43 EDT 2021. Contains 343909 sequences. (Running on oeis4.)