login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103657 Number of different volumes assumed by triangular pyramids with their 4 vertices chosen from distinct points of an (n+1)X(n+1)X(n+1) lattice cube, including degenerate objects with volume=0. 4
3, 13, 39, 90, 178, 309, 503, 756, 1096, 1523, 2059, 2683, 3469, 4355, 5406 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..15.

EXAMPLE

a(1)=3 because 4-point objects with 3 different volumes can be built using the vertices of a cube: 2 regular tetrahedra (e.g. [(0,0,0),(0,1,1),(1,0,1),(1,1,0)]) with volume 1/3, 56 pyramids with volume 1/6 and 12 objects with volume=0, e.g. the faces of the cube.

a(2)=13: The A103157(2)=17550 4-point objects that can selected from the 27 points of a 3X3X3 lattice cube fall into 13 different volume classes (6*V,occurrences):

(0,2918), (1,3688), (2,5272), (3,1272), (4,2788), (5,272), (6,684), (7,72), (8,494), (9,16), (10,48), (12,24), (16,2).

A103658(n) gives the occurrence counts of objects with V=0 (i.e. A103658(2)=2918).

A103659(n) gives 6*V of the most frequently occurring volume and A103660(n) gives the corresponding occurrence count, divided by 2. Therefore A103659(2)=2 and A103660(2)=2636.

A103661(n) gives the smallest value of 6*V not occurring in the list of 4-point object volumes, i.e. A103661(2)=11.

CROSSREFS

Cf. A103157 binomial((n+1)^3, 4), A103158 tetrahedra in lattice cube, A103656, A103658, A103659, A103660, A103661.

Sequence in context: A323009 A328703 A166911 * A320661 A122504 A103277

Adjacent sequences:  A103654 A103655 A103656 * A103658 A103659 A103660

KEYWORD

hard,nonn

AUTHOR

Hugo Pfoertner, Feb 17 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 12:36 EDT 2021. Contains 347642 sequences. (Running on oeis4.)