login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317578
Number T(n,k) of distinct integers that are product of the parts of exactly k partitions of n into 3 positive parts; triangle T(n,k), n>=3, k>=1, read by rows.
6
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 12, 1, 12, 2, 19, 19, 1, 22, 1, 27, 28, 1, 31, 1, 31, 3, 38, 1, 42, 1, 46, 1, 50, 1, 50, 3, 57, 2, 51, 7, 64, 3, 71, 2, 70, 5, 77, 4, 85, 3, 86, 5, 84, 9, 104, 2, 104, 5, 108, 6, 108, 8, 1, 123, 5, 122, 9, 119, 14, 136, 9, 147, 7
OFFSET
3,3
LINKS
FORMULA
Sum_{k>=1} k * T(n,k) = A001399(n-3) = A069905(n) = A211540(n+2).
Sum_{k>=2} T(n,k) = A060277(n).
min { n >= 0 : T(n,k) > 0 } = A103277(k).
EXAMPLE
T(13,2) = 1: only 36 is product of the parts of exactly 2 partitions of 13 into 3 positive parts: [6,6,1], [9,2,2].
T(14,2) = 2: 40 ([8,5,1], [10,2,2]) and 72 ([6,6,2], [8,3,3]).
T(39,3) = 1: 1200 ([20,15,4], [24,10,5], [25,8,6]).
T(49,3) = 2: 3024 ([24,18,7], [27,14,8], [28,12,9]) and 3600 ([20,20,9], [24,15,10], [25,12,12]).
Triangle T(n,k) begins:
1;
1;
2;
3;
4;
5;
7;
8;
10;
12;
12, 1;
12, 2;
19;
19, 1;
22, 1;
MAPLE
b:= proc(n) option remember; local m, c, i, j, h, w;
m, c:= proc() 0 end, 0; forget(m);
for i to iquo(n, 3) do for j from i to iquo(n-i, 2) do
h:= i*j*(n-j-i);
w:= m(h); w:= w+1; m(h):= w;
c:= c+x^w-x^(w-1)
od od; c
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
seq(T(n), n=3..100);
MATHEMATICA
b[n_] := b[n] = Module[{m, c, i, j, h, w} , m[_] = 0; c = 0; For[i = 1, i <= Quotient[n, 3], i++, For[j = i, j <= Quotient[n - i, 2], j++, h = i*j*(n-j-i); w = m[h]; w++; m[h] = w; c = c + x^w - x^(w-1)]]; c];
T[n_] := CoefficientList[b[n], x] // Rest;
T /@ Range[3, 100] // Flatten (* Jean-François Alcover, Jun 13 2021, after Alois P. Heinz *)
CROSSREFS
Row sums give A306403.
Column k=1 gives A306435.
Sequence in context: A373289 A317296 A103740 * A306435 A034155 A306403
KEYWORD
nonn,look,tabf
AUTHOR
Alois P. Heinz, Jul 31 2018
STATUS
approved