login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306403
The number of distinct products that can be formed by multiplying the parts of a partition of n into 3 positive parts.
2
0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 19, 20, 23, 27, 29, 32, 34, 39, 43, 47, 51, 53, 59, 58, 67, 73, 75, 81, 88, 91, 93, 106, 109, 114, 117, 128, 131, 133, 145, 154, 163, 166, 174, 181, 180, 201, 206, 209, 219, 231, 240, 238, 252, 267, 272, 289, 290, 300, 299, 323, 328, 345, 349, 366, 376
OFFSET
0,6
FORMULA
a(n) <= A069905(n).
MAPLE
a:= proc(n) option remember; local m, c, i, j, h, w;
m, c:= proc() true end, 0; forget(m);
for i to iquo(n, 3) do for j from i to iquo(n-i, 2) do
h:= i*j*(n-j-i); w:= m(h);
if w then m(h):= false; c:= c+1 fi
od od; c
end:
seq(a(n), n=0..80); # Alois P. Heinz, Feb 13 2019
MATHEMATICA
a[n_] := a[n] = Module[{m, c = 0, i, j, h, w}, m[_] = True; For[i = 1, i <= Quotient[n, 3], i++, For[j = i, j <= Quotient[n - i, 2], j++, h = i*j*(n - j - i); w = m[h]; If[w, m[h] = False; c++]]]; c];
a /@ Range[0, 80] (* Jean-François Alcover, Feb 24 2020, after Alois P. Heinz *)
CROSSREFS
Row sums of A317578.
Cf. A069905.
Sequence in context: A317578 A306435 A034155 * A129590 A261132 A262525
KEYWORD
nonn
AUTHOR
R. J. Mathar, Feb 13 2019
STATUS
approved