login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A306404 E.g.f. A(x) satisfies: A(x) = (1 + Integral A(x) dx) * (1 + Integral A(x)^3 dx). 1
1, 2, 10, 88, 1088, 17296, 336160, 7722944, 204747904, 6152445568, 206635255040, 7670855683072, 311892151155712, 13784371218151424, 657962006198824960, 33732998333486350336, 1848747736087419723776, 107859057160535649206272, 6674104727394168140922880, 436582063054208216587501568, 30102600290916367728363962368, 2182043529056049327839246811136 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Compare: G(x) = (1 + Integral G(x) dx)^2 holds when G(x) = 1/(1 - x)^2.

Compare: G(x) = (1 + Integral G(x)^2 dx)^2 holds when G(x) = 1/(1 - 3*x)^(2/3), the e.g.f. of the triple factorials product_{k=0..n-1} (3*k+2).

Compare: G(x) = (1 + Integral G(x)^m dx)^2 holds when G(x) = 1/(1 - (2*m-1)*x)^(2/(2*m-1)) = Sum_{n>=0} x^n/n! * product_{k=0..n-1} ((2*m-1)*k + 2).

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..300

FORMULA

E.g.f. A(x) satisfies the following relations.

(1) A(x) = (1 + Integral A(x) dx) * (1 + Integral A(x)^3 dx).

(2) A'(x) = A(x) * (1 + Integral A(x)^3 dx) + A(x)^3 * (1 + Integral A(x) dx).

(3) log(A(x)) = Integral [ A(x)/(1 + Integral A(x) dx) + A(x)^3/(1 + Integral A(x)^3 dx) ] dx.

(4a) log(1 + Integral A(x) dx) = Integral (1 + Integral A(x)^3 dx) dx.

(4b) log(1 + Integral A(x)^3 dx) = Integral A(x)^2*(1 + Integral A(x) dx) dx.

a(n) ~ c * d^n * n^n, where d = 1.30085820842247653985772994360460264422544953483565... and c = 1.4925156370342369979236718531290597194906869115... - Vaclav Kotesovec, Aug 11 2021

EXAMPLE

E.g.f.: A(x) = 1 + 2*x + 10*x^2/2! + 88*x^3/3! + 1088*x^4/4! + 17296*x^5/5! + 336160*x^6/6! + 7722944*x^7/7! + 204747904*x^8/8! + 6152445568*x^9/9! + ...

RELATED SERIES.

A(x)^3 = 1 + 6*x + 54*x^2/2! + 672*x^3/3! + 10728*x^4/4! + 209088*x^5/5! + 4812912*x^6/6! + 127780416*x^7/7! + 3843863424*x^8/8! + ...

log(A(x)) = 2*x + 6*x^2/2! + 44*x^3/3! + 468*x^4/4! + 6624*x^5/5! + 117168*x^6/6! + 2486592*x^7/7! + 61560864*x^8/8! + 1741698432*x^9/9! + ...

PROG

(PARI) {a(n) = my(A=1); for(i=1, n, A = (1 + intformal( A )) * (1 + intformal( A^3 +x*O(x^n))) ); n!*polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A322738.

Sequence in context: A245496 A185388 A245009 * A111811 A186448 A144002

Adjacent sequences:  A306401 A306402 A306403 * A306405 A306406 A306407

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Mar 08 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 19:59 EST 2021. Contains 349596 sequences. (Running on oeis4.)