The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306404 E.g.f. A(x) satisfies: A(x) = (1 + Integral A(x) dx) * (1 + Integral A(x)^3 dx). 1
 1, 2, 10, 88, 1088, 17296, 336160, 7722944, 204747904, 6152445568, 206635255040, 7670855683072, 311892151155712, 13784371218151424, 657962006198824960, 33732998333486350336, 1848747736087419723776, 107859057160535649206272, 6674104727394168140922880, 436582063054208216587501568, 30102600290916367728363962368, 2182043529056049327839246811136 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare: G(x) = (1 + Integral G(x) dx)^2 holds when G(x) = 1/(1 - x)^2. Compare: G(x) = (1 + Integral G(x)^2 dx)^2 holds when G(x) = 1/(1 - 3*x)^(2/3), the e.g.f. of the triple factorials product_{k=0..n-1} (3*k+2). Compare: G(x) = (1 + Integral G(x)^m dx)^2 holds when G(x) = 1/(1 - (2*m-1)*x)^(2/(2*m-1)) = Sum_{n>=0} x^n/n! * product_{k=0..n-1} ((2*m-1)*k + 2). LINKS Paul D. Hanna, Table of n, a(n) for n = 0..300 FORMULA E.g.f. A(x) satisfies the following relations. (1) A(x) = (1 + Integral A(x) dx) * (1 + Integral A(x)^3 dx). (2) A'(x) = A(x) * (1 + Integral A(x)^3 dx) + A(x)^3 * (1 + Integral A(x) dx). (3) log(A(x)) = Integral [ A(x)/(1 + Integral A(x) dx) + A(x)^3/(1 + Integral A(x)^3 dx) ] dx. (4a) log(1 + Integral A(x) dx) = Integral (1 + Integral A(x)^3 dx) dx. (4b) log(1 + Integral A(x)^3 dx) = Integral A(x)^2*(1 + Integral A(x) dx) dx. a(n) ~ c * d^n * n^n, where d = 1.30085820842247653985772994360460264422544953483565... and c = 1.4925156370342369979236718531290597194906869115... - Vaclav Kotesovec, Aug 11 2021 EXAMPLE E.g.f.: A(x) = 1 + 2*x + 10*x^2/2! + 88*x^3/3! + 1088*x^4/4! + 17296*x^5/5! + 336160*x^6/6! + 7722944*x^7/7! + 204747904*x^8/8! + 6152445568*x^9/9! + ... RELATED SERIES. A(x)^3 = 1 + 6*x + 54*x^2/2! + 672*x^3/3! + 10728*x^4/4! + 209088*x^5/5! + 4812912*x^6/6! + 127780416*x^7/7! + 3843863424*x^8/8! + ... log(A(x)) = 2*x + 6*x^2/2! + 44*x^3/3! + 468*x^4/4! + 6624*x^5/5! + 117168*x^6/6! + 2486592*x^7/7! + 61560864*x^8/8! + 1741698432*x^9/9! + ... PROG (PARI) {a(n) = my(A=1); for(i=1, n, A = (1 + intformal( A )) * (1 + intformal( A^3 +x*O(x^n))) ); n!*polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A322738. Sequence in context: A245496 A185388 A245009 * A111811 A186448 A144002 Adjacent sequences:  A306401 A306402 A306403 * A306405 A306406 A306407 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 08 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 19:59 EST 2021. Contains 349596 sequences. (Running on oeis4.)