login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322738
E.g.f. A(x) = (1 + Integral A(x) dx) * (1 + Integral A(x)^2 dx).
2
1, 2, 8, 50, 422, 4480, 57300, 857364, 14690244, 283594200, 6090223440, 144002872968, 3717346949880, 104024775376416, 3136618299654000, 101380000924630416, 3496607473494821136, 128180947344040558752, 4976894571781037789184, 204030008190766804890912, 8806691099474138713650528
OFFSET
0,2
COMMENTS
Compare: G(x) = (1 + Integral G(x) dx)^2 holds when G(x) = 1/(1 - x)^2.
Compare: G(x) = (1 + Integral G(x)^2 dx)^2 holds when G(x) = 1/(1 - 3*x)^(2/3), the e.g.f. of the triple factorials product_{k=0..n-1} (3*k+2).
Compare: G(x) = (1 + Integral G(x)^m dx)^2 holds when G(x) = 1/(1 - (2*m-1)*x)^(2/(2*m-1)) = Sum_{n>=0} x^n/n! * product_{k=0..n-1} ((2*m-1)*k + 2).
LINKS
FORMULA
E.g.f. A(x) satisfies the following relations.
(1) A(x) = (1 + Integral A(x) dx) * (1 + Integral A(x)^2 dx).
(2) A'(x) = A(x) * (1 + Integral A(x)^2 dx) + A(x)^2 * (1 + Integral A(x) dx).
(3) log(A(x)) = Integral [ A(x)/(1 + Integral A(x) dx) + A(x)^2/(1 + Integral A(x)^2 dx) ] dx.
(4a) log(1 + Integral A(x) dx) = Integral (1 + Integral A(x)^2 dx) dx.
(4b) log(1 + Integral A(x)^2 dx) = Integral A(x)*(1 + Integral A(x) dx) dx.
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 8*x^2/2! + 50*x^3/3! + 422*x^4/4! + 4480*x^5/5! + 57300*x^6/6! + 857364*x^7/7! + 14690244*x^8/8! + 283594200*x^9/9! + 6090223440*x^10/10! + ...
RELATED SERIES.
A(x)^2 = 1 + 4*x + 24*x^2/2! + 196*x^3/3! + 2028*x^4/4! + 25400*x^5/5! + 373400*x^6/6! + 6301408*x^7/7! + 120040416*x^8/8! + 2547619968*x^9/9! + ...
log(A(x)) = 2*x + 4*x^2/2! + 18*x^3/3! + 118*x^4/4! + 1028*x^5/5! + 11180*x^6/6! + 145784*x^7/7! + 2216600*x^8/8! + 38502688*x^9/9! + 752186400*x^10/10! + ...
such that
log(A(x)) = Integral [ (1 + Integral A(x)^2 dx) + A(x)*(1 + Integral A(x) dx) ] dx.
PROG
(PARI) {a(n) = my(A=1); for(i=1, n, A = (1 + intformal( A^1 )) * (1 + intformal( A^2 +x*O(x^n))) ); n!*polcoeff(H=A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A000557 A193352 A002801 * A233436 A225052 A295759
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 14 2019
STATUS
approved