OFFSET
0,2
FORMULA
G.f. A(x) and B(x) = A(x)^(1/2) satisfy:
(1) A(x) = Sum_{n>=0} 2^n * ( (1+x)^n - B(x) )^n / ( 3 - 2*(1+x)^n * B(x) )^(n+1),
(2) A(x) = Sum_{n>=0} 2^n * ( (1+x)^n + B(x) )^n / ( 3 + 2*(1+x)^n * B(x) )^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 8*x^2 + 96*x^3 + 2956*x^4 + 114992*x^5 + 5244896*x^6 + 277303392*x^7 + 16680895688*x^8 + 1124043943848*x^9 + ...
such that A(x) and B = A(x)^(1/2) satisfy
A(x) = 1/(3 - 2*B) + 2*((1+x) - B)/(3 - 2*(1+x)*B)^2 + 2^2*((1+x)^2 - B)^2/(3 - 2*(1+x)^2*B)^3 + 2^3*((1+x)^3 - B)^3/(3 - 2*(1+x)^3*B)^4 + 2^4*((1+x)^4 - B)^4/(3 - 2*(1+x)^4*B)^5 + 2^5*((1+x)^5 - B)^5/(3 - 2*(1+x)^5*B)^6 + ...
also,
A(x) = 1/(3 + 2*B) + 2*((1+x) + B)/(3 + 2*(1+x)*B)^2 + 2^2*((1+x)^2 + B)^2/(3 + 2*(1+x)^2*B)^3 + 2^3*((1+x)^3 + B)^3/(3 + 2*(1+x)^3*B)^4 + 2^4*((1+x)^4 + B)^4/(3 + 2*(1+x)^4*B)^5 + 2^5*((1+x)^5 + B)^5/(3 + 2*(1+x)^5*B)^6 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A = Vec( sum(m=0, #A, ( (1+x)^m - Ser(A)^(1/2) )^m *2^m / (3 - 2*(1+x)^m*Ser(A)^(1/2) )^(m+1) ) ) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 25 2019
STATUS
approved