login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317350
G.f. satisfies: A(x) = Sum_{n>=0} ( (1+x)^n - A(x) )^n / (2 - (1+x)^n*A(x))^(n+1).
8
1, 1, 2, 12, 200, 4160, 99862, 2767792, 87200166, 3076185774, 120118928740, 5144915483804, 239932734849080, 12106729328331780, 657428964058944716, 38239094075667233528, 2372421500769940561658, 156417910715313378830238, 10923007991339600108590688, 805475337677577620666606928, 62550798567594006106067173708
OFFSET
0,3
COMMENTS
G.f. A(x) = G(log(1+x)), where G(x) is the e.g.f. of A317355.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} ( (1+x)^n - A(x) )^n / (2 - (1+x)^n*A(x))^(n+1),
(2) A(x) = Sum_{n>=0} ( (1+x)^n + A(x) )^n / (2 + (1+x)^n*A(x))^(n+1).
a(n) ~ c * d^n * n! / sqrt(n), where d = A317904 = 3.956184203026... and c = 0.14581304299... - Vaclav Kotesovec, Aug 07 2018
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 12*x^3 + 200*x^4 + 4160*x^5 + 99862*x^6 + 2767792*x^7 + 87200166*x^8 + 3076185774*x^9 + 120118928740*x^10 + ...
such that A = A(x) satisfies
A(x) = 1/(2 - A) + ((1+x) - A)/(2 - (1+x)*A)^2 + ((1+x)^2 - A)^2/(2 - (1+x)^2*A)^3 + ((1+x)^3 - A)^3/(2 - (1+x)^3*A)^4 + ((1+x)^4 - A)^4/(2 - (1+x)^4*A)^5 + ((1+x)^5 - A)^5/(2 - (1+x)^5*A)^6 + ...
Also,
A(x) = 1/(2 + A) + ((1+x) + A)/(2 + (1+x)*A)^2 + ((1+x)^2 + A)^2/(2 + (1+x)^2*A)^3 + ((1+x)^3 + A)^3/(2 + (1+x)^3*A)^4 + ((1+x)^4 + A)^4/(2 + (1+x)^4*A)^5 + ((1+x)^5 + A)^5/(2 + (1+x)^5*A)^6 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A = Vec( sum(m=0, #A, ( (1+x)^m - Ser(A) )^m / (2 - (1+x)^m*Ser(A))^(m+1) ) ) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A182163 A367052 A245358 * A209832 A094157 A306715
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 02 2018
STATUS
approved