login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317347
O.g.f. A(x) satisfies: [x^n] exp( n^3*x - n*A(x) ) = 0 for n >= 1.
6
1, 9, 552, 85842, 24653700, 11219022936, 7393496092416, 6649411839351120, 7822998961379912592, 11662362974001268456560, 21487905123054927319268352, 47958258768575173308988367040, 127523196462392124262710980808384, 398397752352904475778061859746030080, 1445051361690004153927005867189533921280
OFFSET
1,2
COMMENTS
It is remarkable that this sequence should consist entirely of integers.
LINKS
FORMULA
a(n) ~ sqrt(1-c) * 3^(3*n-1) * n^(2*n - 3/2) / (sqrt(2*Pi) * c^n * (3-c)^(2*n-1) * exp(2*n)), where c = -LambertW(-3*exp(-3)) = 0.1785606278779211065968086697... = -A226750. - Vaclav Kotesovec, Aug 06 2018
EXAMPLE
O.g.f.: A(x) = x + 9*x^2 + 552*x^3 + 85842*x^4 + 24653700*x^5 + 11219022936*x^6 + 7393496092416*x^7 + 6649411839351120*x^8 + ...
such that [x^n] exp( n^3*x - n*A(x) ) = 0 for n >= 1.
ILLUSTRATION OF DEFINITION.
The table of coefficients in begins:
n=1: [1, 0, -18, -3312, -2059236, -2957847840, -8077030651800, ...];
n=2: [1, 6, 0, -7056, -4281984, -6040453824, -16367904244224, ...];
n=3: [1, 24, 522, 0, -6980580, -9667325376, -25560523291464, ...];
n=4: [1, 60, 3528, 189792, 0, -14146669440, -37025599219200, ...];
n=5: [1, 120, 14310, 1679040, 181358460, 0, -51097553724600, ...];
n=6: [1, 210, 43992, 9173088, 1887214464, 358972896960, 0, ...]; ...
in which the coefficient of x^n in row n forms a diagonal of zeros.
RELATED SERIES.
exp(A(x)) = 1 + x + 19*x^2/2! + 3367*x^3/3! + 2074537*x^4/4! + 2969379361*x^5/5! + 8096147776171*x^6/6! + 37321188279552199*x^7/7! + ...
PROG
(PARI) {a(n) = my(A=[1], m); for(i=1, n+1, m=#A; A=concat(A, 0); A[m+1] = Vec( exp(m^3*x +x*O(x^#A)) / Ser(A)^m )[m+1]/m ); polcoeff( log(Ser(A)), n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A054608 A269661 A287043 * A357229 A267548 A326614
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 29 2018
STATUS
approved