OFFSET
1,2
FORMULA
a(n) = Product_{i=1..n} A005060(i).
a(n) = 5^(binomial(n+1,2))*(4/5;4/5)_{n}, where (a;q)_{n} is the q-Pochhammer symbol. - G. C. Greubel, Mar 05 2016
a(n) ~ c * 5^(n*(n+1)/2), where c = QPochhammer(4/5) = 0.00336800585242312126... . - Vaclav Kotesovec, Oct 10 2016
MATHEMATICA
Table[Product[5^i - 4^i, {i, n}], {n, 15}] (* Vincenzo Librandi, Mar 03 2016 *)
Table[5^(Binomial[n + 1, 2]) *QPochhammer[4/5, 4/5, n], {n, 1, 20}] (* G. C. Greubel, Mar 05 2016 *)
FoldList[Times, Table[5^n-4^n, {n, 15}]] (* Harvey P. Dale, Aug 28 2018 *)
PROG
(Magma) [&*[ 5^k-4^k: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Mar 03 2016
(PARI) a(n) = prod(k=1, n, 5^k-4^k); \\ Michel Marcus, Mar 05 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bob Selcoe, Mar 02 2016
STATUS
approved