login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269663
Semiprimes which are the product of a twin prime pair minus one.
2
14, 34, 142, 898, 1762, 5182, 19042, 79522, 213442, 359998, 412162, 685582, 777922, 1192462, 1695202, 2585662, 4536898, 5143822, 5673922, 7225342, 12446782, 12659362, 12830722, 17040382, 17892898, 18818242, 20684302, 25100098, 32970562, 37601422, 46131262, 48441598
OFFSET
1,1
COMMENTS
Subsequence of A103533 and A001358.
All the terms in this sequence, except a(1), are congruent to 1 (mod 3).
LINKS
FORMULA
a(n) = 2*A086870(n). - Ray Chandler, Apr 04 2016
EXAMPLE
a(1) = 14 = 2 * 7 that is semiprime. Also, 3 * 5 - 1 = 14 where {3,5} is a twin prime pair.
a(2) = 34 = 2 * 17 that is semiprime. Also, 5 * 7 - 1 = 34 where {5,7} is a twin prime pair.
MAPLE
A269663:= proc() local a, b, d; a:= ithprime(n); b:=a+2; d:=(a*b)-1; if isprime(b)and bigomega(d)=2 then return (d): fi; end: seq(A269663 (n), n=1..1000);
MATHEMATICA
A269663= {}; Do[a = Prime[n]; b = a + 2; c = a*b - 1; If[PrimeQ[b] && PrimeOmega[c] == 2, AppendTo[A269663, c]], {n, 1000}]; A269663
Select[Times @@ # - 1 & /@ Transpose@{#, 2 + #} &@ Select[Prime@ Range@ 900, NextPrime@ # == # + 2 &], PrimeOmega@ # == 2 &] (* Michael De Vlieger, Apr 01 2016 *)
Select[Times@@@Select[Partition[Prime[Range[1000]], 2, 1], #[[2]]-#[[1]]==2&]-1, PrimeOmega[ #]==2&] (* Harvey P. Dale, Mar 14 2023 *)
PROG
(PARI) for(n = 1, 1000, p = prime(n); q = p + 2; c=(p*q) - 1; if(isprime(q) && bigomega(c)==2, print1(c, ", ")));
(Magma) IsP2:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ s: n in [1..1000] | IsPrime(n) and IsPrime(n+2) and IsP2(s) where s is (n * (n+2) - 1)];
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Mar 02 2016
STATUS
approved