The OEIS is supported by the many generous donors to the OEIS Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001097 Twin primes. 259
 3, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, 59, 61, 71, 73, 101, 103, 107, 109, 137, 139, 149, 151, 179, 181, 191, 193, 197, 199, 227, 229, 239, 241, 269, 271, 281, 283, 311, 313, 347, 349, 419, 421, 431, 433, 461, 463, 521, 523, 569, 571, 599, 601, 617, 619, 641, 643 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Union of A001359 and A006512. The only twin primes that are Fibonacci numbers are 3, 5 and 13 [MacKinnon]. - Emeric Deutsch, Apr 24 2005 (p, p+2) are twin primes if and only if p + 2 can be represented as the sum of two primes. Brun (1919): Even if there are infinitely many twin primes, the series of all twin prime reciprocals does converges to [Brun's constant] (A065421). Clement (1949): For every n > 1, (n, n+2) are twin primes if and only if 4((n-1)! + 1) == -n (mod n(n+2)). - Stefan Steinerberger, Dec 04 2005 A164292(a(n)) = 1. - Reinhard Zumkeller, Mar 29 2010 The 100355-digit numbers 65516468355 * 2^333333 +- 1 are currently the largest known twin prime pair. They were discovered by Twin Prime Search and Primegrid in August 2009. - Paul Muljadi, Mar 07 2011 For every n > 2, the pair (n, n+2) is a twin prime if and only if ((n-1)!!)^4 == 1 (mod n*(n+2)). - Thomas Ordowski, Aug 15 2016 The term "twin primes" ("primzahlzwillinge", in German) was coined by the German mathematician Paul Gustav Samuel Stäckel (1862-1919) in 1916. Brun (1919) used the same term in French ("nombres premiers jumeaux"). Glaisher (1878) and Hardy and Littlewood (1923) used the term "prime-pairs". The term "twin primes" in English was used by Dantzig (1930). - Amiram Eldar, May 20 2023 REFERENCES Tobias Dantzig, Number: The Language of Science, Macmillan, 1930. Paulo Ribenboim, The New Book of Prime Number Records, Springer-Verlag, 1996, pp. 259-265. LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 870. Viggo Brun, La série 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/29 + 1/31 + 1/41 + 1/43 + 1/59 + 1/61 + ... où les dénominateurs sont "nombres premiers jumeaux" est convergente ou finie, Bull Sci. Math. 43 (1919), 100-104 and 124-128. J. P. Delahaye, Premiers jumeaux: frères ennemis? [Twin primes: Enemy Brothers?], Pour la science, No. 260 (Juin 1999), 102-106. Harvey Dubner, Twin Prime Statistics, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.2. J. C. Evard, Twin primes and their applications [Cached copy on the Wayback Machine] J. C. Evard, Twin primes and their applications [Local cached copy] J. C. Evard, Twin primes and their applications [Pdf file of cached copy] J. W. L. Glaisher, An enumeration of prime-pairs, Messenger of Mathematics, Vol. 8 (1878), pp. 28-33. Andrew Granville, Primes in intervals of bounded length, Joint Math Meeting, Current Events Bulletin, Baltimore, Friday, Jan 17 2014. G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: On the expression of a number as a sum of primes, Acta Mathematica, Vol. 44, No. 1 (1923), pp. 1-70; alternative link. Nick MacKinnon, Problem 10844, Amer. Math. Monthly 109, (2002), p. 78. James Maynard, Small gaps between primes, Annals of Mathematics, Second series, Vol. 181, No. 1 (2015), pp. 383-413; arXiv preprint, arXiv:1311.4600 [math.NT], 2013-2019. Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos. D. H. J. Polymath, New equidistribution estimates of Zhang type, and bounded gaps between primes, arXiv:1402.0811 [math.NT], 2014. D. H. J. Polymath, Variants of the Selberg sieve, and bounded intervals containing many primes, arXiv:1407.4897 [math.NT], 2014. Paul Stäckel, Die Darstellung der geraden Zahlen als Summen von zwei Primzahlen, Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse (in German), Abt. A, Bd. 10 (1916), pp. 1-47. See p. 22. Eric Weisstein's World of Mathematics, Twin Primes. Yitang Zhang, Bounded gaps between primes, Annals of Mathematics, Volume 179, Issue 3 (2014), Pages 1121-1174. Index entries for "core" sequences. Index entries for primes, gaps between. MAPLE A001097 := proc(n) option remember; if n = 1 then 3; else for a from procname(n-1)+1 do if isprime(a) and ( isprime(a-2) or isprime(a+2) ) then return a; end if; end do: end if; end proc: # R. J. Mathar, Feb 19 2015 MATHEMATICA Select[ Prime[ Range], PrimeQ[ # - 2] || PrimeQ[ # + 2] &] (* Robert G. Wilson v, Jun 09 2005 *) Union[Flatten[Select[Partition[Prime[Range], 2, 1], #[]-#[] == 2&]]] (* Harvey P. Dale, Aug 19 2015 *) PROG (PARI) isA001097(n) = (isprime(n) && (isprime(n+2) || isprime(n-2))) \\ Michael B. Porter, Oct 29 2009 (PARI) a(n)=if(n==1, return(3)); my(p); forprime(q=3, default(primelimit), if(q-p==2 && (n-=2)<0, return(if(n==-1, q, p))); p=q) \\ Charles R Greathouse IV, Aug 22 2012 (PARI) list(lim)=my(v=List(), p=5); forprime(q=7, lim, if(q-p==2, listput(v, p); listput(v, q)); p=q); if(p+2>lim && isprime(p+2), listput(v, p)); Vec(v) \\ Charles R Greathouse IV, Mar 17 2017 (Haskell) a001097 n = a001097_list !! (n-1) a001097_list = filter ((== 1) . a164292) [1..] -- Reinhard Zumkeller, Feb 03 2014, Nov 27 2011 (Python) from sympy import nextprime from itertools import islice def agen(): # generator of terms yield 3 p, q = 5, 7 while True: if q - p == 2: yield from [p, q] p, q = q, nextprime(q) print(list(islice(agen(), 58))) # Michael S. Branicky, Apr 30 2022 CROSSREFS Cf. A070076, A001359, A006512, A164292. See A077800 for another version. Sequence in context: A045393 A132143 A239879 * A117243 A179679 A059362 Adjacent sequences: A001094 A001095 A001096 * A001098 A001099 A001100 KEYWORD nonn,core,nice AUTHOR N. J. A. Sloane, Mar 15 1996 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 10:15 EST 2023. Contains 367539 sequences. (Running on oeis4.)