login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001096
a(n) = n + n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5).
2
0, 1, 2, 3, 4, 5, 726, 5047, 20168, 60489, 151210, 332651, 665292, 1235533, 2162174, 3603615, 5765776, 8910737, 13366098, 19535059, 27907220, 39070101, 53721382, 72681863, 96909144, 127512025, 165765626, 213127227, 271252828, 342014429
OFFSET
0,3
LINKS
FORMULA
G.f.: x*(1 -5*x +10*x^2 -10*x^3 +5*x^4 +719*x^5)/(1-x)^7. - Ralf Stephan, Dec 30 2002
From G. C. Greubel, Aug 26 2019: (Start)
a(n) = n + 6!*binomial(n,6).
E.g.f.: x*(1 + x^5)*exp(x). (End)
MAPLE
seq(n + 6!*binomial(n, 6), n=0..35); # G. C. Greubel, Aug 26 2019
MATHEMATICA
Table[n + 6!*Binomial[n, 6], {n, 0, 35}] (* G. C. Greubel, Aug 26 2019 *)
PROG
(Magma) [n + n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5): n in [0..35]]; // Vincenzo Librandi, Apr 30 2011
(PARI) vector(35, n, (n-1) + 6!*binomial(n-1, 6)) \\ G. C. Greubel, Aug 26 2019
(Sage) [n + 720*binomial(n, 6) for n in (0..35)] # G. C. Greubel, Aug 26 2019
(GAP) List([0..35], n-> n + 720*Binomial(n, 6)); # G. C. Greubel, Aug 26 2019
CROSSREFS
Equals A053625(n) + n.
Sequence in context: A061340 A004889 A037435 * A004900 A355728 A062937
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Ray Wills (rwills(AT)vmprofs.estec.esa.nl)
EXTENSIONS
More terms from James A. Sellers, Sep 19 2000
STATUS
approved