|
|
A001096
|
|
a(n) = n + n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5).
|
|
3
|
|
|
0, 1, 2, 3, 4, 5, 726, 5047, 20168, 60489, 151210, 332651, 665292, 1235533, 2162174, 3603615, 5765776, 8910737, 13366098, 19535059, 27907220, 39070101, 53721382, 72681863, 96909144, 127512025, 165765626, 213127227, 271252828, 342014429
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
|
|
FORMULA
|
G.f.: x*(1 -5*x +10*x^2 -10*x^3 +5*x^4 +719*x^5)/(1-x)^7. - Ralf Stephan, Dec 30 2002
From G. C. Greubel, Aug 26 2019: (Start)
a(n) = n + 6!*binomial(n,6).
E.g.f.: x*(1 + x^5)*exp(x). (End)
|
|
MAPLE
|
seq(n + 6!*binomial(n, 6), n=0..35); # G. C. Greubel, Aug 26 2019
|
|
MATHEMATICA
|
Table[n + 6!*Binomial[n, 6], {n, 0, 35}] (* G. C. Greubel, Aug 26 2019 *)
|
|
PROG
|
(MAGMA) [n + n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5): n in [0..35]]; // Vincenzo Librandi, Apr 30 2011
(PARI) vector(35, n, (n-1) + 6!*binomial(n-1, 6)) \\ G. C. Greubel, Aug 26 2019
(Sage) [n + 720*binomial(n, 6) for n in (0..35)] # G. C. Greubel, Aug 26 2019
(GAP) List([0..35], n-> n + 720*Binomial(n, 6)); # G. C. Greubel, Aug 26 2019
|
|
CROSSREFS
|
Equals A053625(n) + n.
Cf. A001094, A001095.
Sequence in context: A061340 A004889 A037435 * A004900 A062937 A004911
Adjacent sequences: A001093 A001094 A001095 * A001097 A001098 A001099
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Ray Wills (rwills(AT)vmprofs.estec.esa.nl)
|
|
EXTENSIONS
|
More terms from James A. Sellers, Sep 19 2000
|
|
STATUS
|
approved
|
|
|
|