The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001095 a(n) = n + n*(n-1)*(n-2)*(n-3)*(n-4). 3
 0, 1, 2, 3, 4, 125, 726, 2527, 6728, 15129, 30250, 55451, 95052, 154453, 240254, 360375, 524176, 742577, 1028178, 1395379, 1860500, 2441901, 3160102, 4037903, 5100504, 6375625, 7893626, 9687627, 11793628, 14250629, 17100750, 20389351 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1). FORMULA G.f.: x*(1 - 4*x + 6*x^2 - 4*x^3 + 121*x^4)/(1-x)^6. - Colin Barker, Jun 25 2012 From G. C. Greubel, Aug 26 2019: (Start) a(n) = n + 5!*binomial(n,5). E.g.f.: x*(1 + x^4)*exp(x). (End) MAPLE seq(n + 5!*binomial(n, 5), n=0..35); # G. C. Greubel, Aug 26 2019 MATHEMATICA Table[n+Times@@(n-Range[0, 4]), {n, 0, 40}] (* or *)  LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 2, 3, 4, 125}, 40] (* Harvey P. Dale, Oct 08 2017 *) PROG (MAGMA) [n + n*(n-1)*(n-2)*(n-3)*(n-4): n in [0..35]]; // Vincenzo Librandi, Apr 30 2011 (PARI) vector(35, n, (n-1) + 5!*binomial(n-1, 5)) \\ G. C. Greubel, Aug 26 2019 (Sage) [n + 120*binomial(n, 5) for n in (0..35)] # G. C. Greubel, Aug 26 2019 (GAP) List([0..35], n-> n + 120*Binomial(n, 5)); # G. C. Greubel, Aug 26 2019 CROSSREFS Equals A052787(n) + n. Sequence in context: A244542 A085935 A100981 * A004866 A062930 A073786 Adjacent sequences:  A001092 A001093 A001094 * A001096 A001097 A001098 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Ray Wills (rwills(AT)vmprofs.estec.esa.nl) EXTENSIONS More terms from James A. Sellers, Sep 19 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 15 17:25 EDT 2021. Contains 342977 sequences. (Running on oeis4.)