|
|
A006512
|
|
Greater of twin primes.
(Formerly M3763)
|
|
411
|
|
|
5, 7, 13, 19, 31, 43, 61, 73, 103, 109, 139, 151, 181, 193, 199, 229, 241, 271, 283, 313, 349, 421, 433, 463, 523, 571, 601, 619, 643, 661, 811, 823, 829, 859, 883, 1021, 1033, 1051, 1063, 1093, 1153, 1231, 1279, 1291, 1303, 1321, 1429, 1453, 1483, 1489, 1609
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Also primes that are the sum of two primes (which is possible only if 2 is one of the primes). - Cino Hilliard, Jul 02 2004, edited by M. F. Hasler, Nov 14 2019
The set of greater of twin primes larger than five is a proper subset of the set of primes of the form 3n + 1 (A002476). - Paul Muljadi, Jun 05 2008
Smallest prime > n-th isolated composite. - Juri-Stepan Gerasimov, Nov 07 2009
Subsequence of A175075. Union of a(n) and sequence A175080 is A175075. - Jaroslav Krizek, Jan 30 2010
A164292(a(n))=1; A010051(a(n)+2)=0 for n > 1. - Reinhard Zumkeller, Mar 29 2010
Omega(n) = Omega(n-2); d(n) = d(n-2). - Juri-Stepan Gerasimov, Sep 19 2010
Solutions of the equation (n-2)'+n' = 2, where n' is the arithmetic derivative of n. - Paolo P. Lava, Dec 18 2012
Aside from the first term, all subsequent terms have digital root 1, 4, or 7. - J. W. Helkenberg, Jul 24 2013
Also primes p with property that the sum of the successive gaps between primes <= p is a prime number. - Robert G. Wilson v, Dec 19 2014
The phrase "x is an element of the {primes, positive integers} and there {exist no, exist} elements a,b of {1 and primes, primes}: a+b=x" determines A133410, A067829, A025584, A006512, A166081, A014092, A014091 and A038609 for the first few hundred terms with only de-duplication or omitting/including 3, 4 and 6 in the case of A166081/A014091 and one case of omitting/including 3 given 1 isn't prime. - Harry G. Coin, Nov 25 2015
The yet unproved Twin Prime Conjecture states that this sequence is infinite. - M. F. Hasler, Nov 14 2019
|
|
REFERENCES
|
See A001359 for further references and links.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..10000
Harvey Dubner, Twin Prime Statistics, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.2.
R. K. Guy, Letter to N. J. A. Sloane, Jun 1991
Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
Wikipedia, Twin prime.
Index entries for primes, gaps between
|
|
MAPLE
|
for i from 1 to 253 do if ithprime(i+1) = ithprime(i) + 2 then print({ithprime(i+1)}); fi; od; # Zerinvary Lajos, Mar 19 2007
P := select(isprime, [$1..1609]): select(p->member(p-2, P), P); # Peter Luschny, Mar 03 2011
A006512 := proc(n)
2+A001359(n) ;
end proc: # R. J. Mathar, Nov 26 2014
|
|
MATHEMATICA
|
Select[Prime[Range[254]], PrimeQ[# - 2] &] (* Robert G. Wilson v, Jun 09 2005 *)
Transpose[Select[Partition[Prime[Range[300]], 2, 1], Last[#] - First[#] == 2 &]][[2]] (* Harvey P. Dale, Nov 02 2011 *)
Cases[Prime[Range[500]] + 2, _?PrimeQ] (* Fred Patrick Doty, Aug 23 2017 *)
|
|
PROG
|
(PARI) select(p->isprime(p-2), primes(1000))
(MAGMA) [n: n in PrimesUpTo(1610)|IsPrime(n-2)]; // Bruno Berselli, Feb 28 2011
(Haskell)
a006512 = (+ 2) . a001359 -- Reinhard Zumkeller, Feb 10 2015
(PARI) a(n)=p=3; while(p+2 < (p=nextprime(p+1)) || n-->0, ); p
vector(100, n, a(n)) \\ Altug Alkan, Dec 04 2015
(Python)
from sympy import primerange, isprime
print([n for n in primerange(1, 2001) if isprime(n - 2)]) # Indranil Ghosh, Jul 20 2017
|
|
CROSSREFS
|
Subsequence of A139690.
Bisection of A077800.
Cf. A001097, A001359, A014574, A067829, A002476.
Sequence in context: A106986 A218011 A242255 * A074304 A264865 A293712
Adjacent sequences: A006509 A006510 A006511 * A006513 A006514 A006515
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|