|
|
A067829
|
|
Primes p such that sigma(p-2) < p.
|
|
5
|
|
|
3, 5, 7, 13, 19, 31, 43, 61, 73, 103, 109, 139, 151, 181, 193, 199, 229, 241, 271, 283, 313, 349, 421, 433, 463, 523, 571, 601, 619, 643, 661, 811, 823, 829, 859, 883, 1021, 1033, 1051, 1063, 1093, 1153, 1231, 1279, 1291, 1303, 1321, 1429, 1453, 1483, 1489
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Smallest prime > n-th odd number that is the difference of 2 primes. - Juri-Stepan Gerasimov, Nov 08 2010
These primes are the only primes, p(j) = A000040(j), such that (p(j)-p(j-m)) divides (p(j)+p(j-m)) for some m, 0 < m < j. For all such cases, m=1. It is easy to prove for j-m>1 the only common factor of (p(j)-p(j-m)) and (p(j)+p(j-m)) is 2, and there are no common factors if j-m = 1. Thus, p(j-m) is the lesser member of a twin prime pair, except when j=2. - Richard R. Forberg, Mar 25 2015
|
|
LINKS
|
|
|
MATHEMATICA
|
Select[Prime@ Range@ 240, DivisorSigma[1, # - 2] < # &] (* Michael De Vlieger, Jun 12 2015 *)
|
|
PROG
|
(PARI) lista(nn) = forprime(p=3, nn, if (sigma(p-2) < p, print1(p, ", ")); ); \\ Michel Marcus, Jun 06 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|