login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133410
Least prime p such that p-6*n is prime.
2
2, 11, 17, 23, 29, 37, 41, 47, 53, 59, 67, 71, 79, 83, 89, 97, 101, 107, 113, 127, 127, 131, 137, 149, 149, 157, 163, 167, 173, 179, 191, 191, 197, 211, 211, 223, 223, 227, 233, 239, 251, 251, 257, 263, 269, 277, 281, 293, 293, 307, 307, 311, 317, 331, 331, 337
OFFSET
0,1
COMMENTS
If duplicates are omitted, this is the sequence of primes p such that all p - phi(k) - 1 are composite for 1 <= phi(k)-1 < p. - Michel Lagneau, Sep 14 2012
If duplicates are omitted, the given entries equal A025584 (p: p-2 is not a prime) except A025584 includes 3 (since 1 is not prime). - Harry G. Coin, Nov 29 2015
LINKS
MAPLE
Primes:= select(isprime, {2, seq(i, i=3..10^4, 2)}):
seq(min(Primes intersect map(`+`, Primes, 6*n)), n=0..1000); # Robert Israel, Nov 30 2015
MATHEMATICA
a={}; Do[i=6*n+1; While[Not[PrimeQ[i]&&PrimeQ[i-6*n]], i++ ]; AppendTo[a, i], {n, 0, 60}]; a (* Stefan Steinerberger, Nov 26 2007 *)
PROG
(PARI) a(n) = {k=1; while(k, if(ispseudoprime(prime(k)-6*n), return(prime(k))); k++)} \\ Altug Alkan, Dec 04 2015
CROSSREFS
Cf. A025584, A067829 (complement w.r.t. primes), A133387.
Sequence in context: A173638 A018420 A253474 * A156829 A255609 A105840
KEYWORD
nonn
AUTHOR
Pierre CAMI, Nov 25 2007
EXTENSIONS
More terms from Stefan Steinerberger, Nov 26 2007
STATUS
approved