|
|
A025584
|
|
Primes p such that p-2 is not a prime.
|
|
19
|
|
|
2, 3, 11, 17, 23, 29, 37, 41, 47, 53, 59, 67, 71, 79, 83, 89, 97, 101, 107, 113, 127, 131, 137, 149, 157, 163, 167, 173, 179, 191, 197, 211, 223, 227, 233, 239, 251, 257, 263, 269, 277, 281, 293, 307, 311, 317, 331, 337, 347, 353, 359, 367, 373, 379, 383, 389, 397, 401
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Primes p (for p>=11) such that sigma(p-2) > p. - Benoit Cloitre, Feb 08 2002
Prime numbers that are not the sum of two smaller prime numbers. - Tomas Xordan, May 10 2007
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n) ~ n log n. - Charles R Greathouse IV, Jan 10 2013
|
|
MATHEMATICA
|
Select[ Prime /@ Range[100], ! PrimeQ[# - 2] &] (* Jean-François Alcover, Apr 19 2013 *)
|
|
PROG
|
(MAGMA) [p: p in PrimesUpTo(420) | not IsPrime(p-2)]; // Vincenzo Librandi, Jul 26 2013
(PARI) lista(nn) = forprime(p=2, nn, if (!isprime(p-2), print1(p, ", ")); ); \\ Michel Marcus, Dec 05 2015
|
|
CROSSREFS
|
Complement of A006512 in A000040.
Cf. A014092.
Sequence in context: A100962 A045337 A098700 * A242256 A189483 A164952
Adjacent sequences: A025581 A025582 A025583 * A025585 A025586 A025587
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
EXTENSIONS
|
Better description from Vladeta Jovovic, Dec 14 2002
|
|
STATUS
|
approved
|
|
|
|