The OEIS is supported by the many generous donors to the OEIS Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025586 Largest value in '3x+1' trajectory of n. 54
 1, 2, 16, 4, 16, 16, 52, 8, 52, 16, 52, 16, 40, 52, 160, 16, 52, 52, 88, 20, 64, 52, 160, 24, 88, 40, 9232, 52, 88, 160, 9232, 32, 100, 52, 160, 52, 112, 88, 304, 40, 9232, 64, 196, 52, 136, 160, 9232, 48, 148, 88, 232, 52, 160, 9232, 9232, 56, 196, 88, 304, 160, 184, 9232 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Here by definition the trajectory ends when 1 is reached. Therefore this sequence differs for n = 1 and n = 2 from A056959, which considers the orbit ending in the infinite loop 1 -> 4 -> 2 -> 1. a(n) = A220237(n,A006577(n)). - Reinhard Zumkeller, Jan 03 2013 A006885 and A006884 give record values and where they occur. - Reinhard Zumkeller, May 11 2013 For n > 2, a(n) is divisible by 4. See the explanatory comment in A056959. - Peter Munn, Oct 14 2019 In an email of Aug 06 2023, Guy Chouraqui observes that the digital root of a(n) appears to be either 7 or a multiple of 4 for all n > 2. (See also A006885.) - N. J. A. Sloane, Aug 11 2023 LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 Christian Hercher, There are no Collatz m-Cycles with m <= 91, J. Int. Seq. (2023) Vol. 26, Article 23.3.5. Philippe Picart, Algorithme de Collatz et conjecture de Syracuse Index entries for sequences related to 3x+1 (or Collatz) problem EXAMPLE The 3x + 1 trajectory of 9 is 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 (see A033479). Since the largest number in that sequence is 52, a(9) = 52. MAPLE a:= proc(n) option remember; `if`(n=1, 1, max(n, a(`if`(n::even, n/2, 3*n+1)))) end: seq(a(n), n=1..87); # Alois P. Heinz, Oct 16 2021 MATHEMATICA collatz[a0_Integer, maxits_:1000] := NestWhileList[If[EvenQ[#], #/2, 3# + 1] &, a0, Unequal[#, 1, -1, -10, -34] &, 1, maxits]; (* collatz[n] function definition by Eric Weisstein *) Flatten[Table[Take[Sort[Collatz[n], Greater], 1], {n, 60}]] (* Alonso del Arte, Nov 14 2007 *) collatzMax[n_] := Module[{r = m = n}, While[m > 2, If[OddQ[m], m = 3 * m + 1; If[m > r, r = m], m = m/2]]; r]; Table[ collatzMax[n], {n, 100}] (* Jean-François Alcover, Jan 28 2015, after Charles R Greathouse IV *) (* Using Weisstein's collatz[n] definition above *) Table[Max[collatz[n]], {n, 100}] (* Alonso del Arte, May 25 2019 *) PROG (PARI) a(n)=my(r=n); while(n>2, if(n%2, n=3*n+1; if(n>r, r=n), n/=2)); r \\ Charles R Greathouse IV, Jul 19 2011 (Haskell) a025586 = last . a220237_row -- Reinhard Zumkeller, Jan 03 2013, Aug 29 2012 (Python) def a(n): if n<2: return 1 l=[n, ] while True: if n%2==0: n//=2 else: n = 3*n + 1 if not n in l: l+=[n, ] if n<2: break else: break return max(l) print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 14 2017 (Scala) def collatz(n: Int): Int = (n % 2) match { case 0 => n / 2 case 1 => 3 * n + 1 } def collatzTrajectory(start: Int): List[Int] = if (start == 1) List(1) else { import scala.collection.mutable.ListBuffer var curr = start; var trajectory = new ListBuffer[Int]() while (curr > 1) { trajectory += curr; curr = collatz(curr) } trajectory.toList } for (n <- 1 to 100) yield collatzTrajectory(n).max // Alonso del Arte, Jun 02 2019 CROSSREFS Essentially the same as A056959: only a(1) and a(2) differ, see Comments. Cf. A006370, A006577, A006884, A006885, A220237. Sequence in context: A110009 A232503 A348007 * A087251 A336833 A211367 Adjacent sequences: A025583 A025584 A025585 * A025587 A025588 A025589 KEYWORD nonn,nice,look AUTHOR David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 15:29 EST 2023. Contains 367610 sequences. (Running on oeis4.)