|
|
A006885
|
|
Record highest point of trajectory before reaching 1 in '3x+1' problem, corresponding to starting values in A006884.
(Formerly M2086)
|
|
13
|
|
|
1, 2, 16, 52, 160, 9232, 13120, 39364, 41524, 250504, 1276936, 6810136, 8153620, 27114424, 50143264, 106358020, 121012864, 593279152, 1570824736, 2482111348, 2798323360, 17202377752, 24648077896, 52483285312, 56991483520, 90239155648, 139646736808
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Both the 3x+1 steps and the halving steps are counted.
|
|
REFERENCES
|
R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 96.
D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
G. T. Leavens and M. Vermeulen, 3x+1 search problems, Computers and Mathematics with Applications, 24 (1992), 79-99.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
G. T. Leavens and M. Vermeulen, 3x+1 search programs, Computers and Mathematics with Applications, 24 (1992), 79-99. (Annotated scanned copy)
|
|
MATHEMATICA
|
mcoll[n_]:=Max@@NestWhileList[If[EvenQ[#], #/2, 3#+1]&, n, #>=n&]; t={1, max=2}; Do[If[(y=mcoll[n])>max, AppendTo[t, max=y]], {n, 3, 10^6, 4}]; t (* Jayanta Basu, May 28 2013 *)
|
|
PROG
|
(Haskell)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|