The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006888 a(n) = a(n-1) + a(n-2)*a(n-3) for n > 2 with a(0) = a(1) = a(2) = 1. (Formerly M0733) 3
 1, 1, 1, 2, 3, 5, 11, 26, 81, 367, 2473, 32200, 939791, 80570391, 30341840591, 75749670168872, 2444729709746709953, 2298386861814452020993305, 185187471463742319884263934176321, 5618934645754484318302453706799174724040986 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Tends towards something like 1.60119...^(1.3247...^n) where 1.3247... = (1/2+sqrt(23/108))^(1/3)+(1/2-sqrt(23/108))^(1/3) is the smallest Pisot-Vijayaraghavan number A060006. Any four consecutive terms are pairwise coprime. - Henry Bottomley, Sep 25 2002 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..30 FORMULA Limit_{n->infinity} a(n)/(a(n-1)*a(n-5)) = 1 agrees with lim_{n->infinity} a(n) = c^(P^n) (c=1.60119..., P=PisotV) since PisotV is real root of x^3-x-1 and thus a root of x^5-x^4-1 because x^5-x^4-1 = (x^3-x-1)*(x^2-x+1) and c^(P^n)/(c^(P^(n-1)*c^(P^(n-5)) = c^(P^(n-5)*(P^5-P^4-1)). - Gerald McGarvey, Aug 14 2004 EXAMPLE From Muniru A Asiru, Jan 28 2018: (Start) a(3) = a(2) + a(1) * a(0) = 1 + 1 * 1 = 2. a(4) = a(3) + a(2) * a(1) = 2 + 1 * 1 = 3. a(5) = a(4) + a(3) * a(2) = 3 + 2 * 1 = 5. a(6) = a(5) + a(4) * a(3) = 5 + 3 * 2 = 11. a(7) = a(6) + a(5) * a(4) = 11 + 5 * 3 = 26. ... (End) MAPLE a := proc(n) option remember: if n=0 then 1 elif n=1 then 1 elif n=2 then 1 elif n>=3 then procname(n-1) + procname(n-2) * procname(n-3) fi; end: seq(a(n), n=0..35); # Muniru A Asiru, Jan 28 2018 MATHEMATICA a=1; b=1; c=1; lst={a, b, c}; Do[d=a*b+c; AppendTo[lst, d]; a=b; b=c; c=d, {n, 2*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 13 2009 *) Nest[Append[#, Last[#] + Times @@ #[[-3 ;; -2]]] &, {1, 1, 1}, 17] (* Michael De Vlieger, Jan 23 2018 *) nxt[{a_, b_, c_}]:={b, c, c+b*a}; NestList[nxt, {1, 1, 1}, 20][[All, 1]] (* Harvey P. Dale, Feb 03 2021 *) PROG (GAP) a := [1, 1, 1];; for n in [4..35] do a[n] := a[n-1] + a[n-2] * a[n-3]; od; a; # Muniru A Asiru, Jan 28 2018 CROSSREFS Sequence in context: A369495 A273755 A258804 * A009589 A098179 A055228 Adjacent sequences: A006885 A006886 A006887 * A006889 A006890 A006891 KEYWORD nonn,easy AUTHOR Robert Munafo EXTENSIONS More terms from Michel ten Voorde Apr 11 2001 Typo in Mathematica code corrected by Vincenzo Librandi, Jun 09 2013 Definition clarified by Matthew Conroy, Jan 23 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 25 01:41 EDT 2024. Contains 374585 sequences. (Running on oeis4.)