OFFSET
1,2
COMMENTS
Both the 3x+1 steps and the halving steps are counted.
This sequence without a(2) = 2 specifies where records occur in A208981. - Omar E. Pol, Apr 14 2022
REFERENCES
D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 1..148 (from Eric Rosendaal's 3x+1 Delay Records, terms 1..130 from T. D. Noe)
T. Ahmed and H. Snevily, Are there an infinite number of Collatz integers?, 2013.
Gaston H. Gonnet, Computations on the 3n+1 conjecture, Maple Technical Newsletter 6 (1991): 18-22.
Brian Hayes, Computer Recreations: On the ups and downs of hailstone numbers, Scientific American, 250 (No. 1, 1984), pp. 10-16.
J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23.
G. T. Leavens and M. Vermeulen, 3x+1 search programs, Computers and Mathematics with Applications, 24 (1992), 79-99. (Annotated scanned copy)
Eric Roosendaal, 3x+1 Delay Records
Robert G. Wilson v, Letter to N. J. A. Sloane with attachments, Jan. 1989
Robert G. Wilson v, Tables of A6877, A6884, A6885, Jan. 1989
David Barina, Convergence verification of the Collatz problem, The Journal of Supercomputing 77(3) (2021), 2681-2688.
David Barina, Computational Verification of the Collatz Problem, preprint on Research Square (2024).
MAPLE
A006877 := proc(n) local a, L; L := 0; a := n; while a <> 1 do if a mod 2 = 0 then a := a/2; else a := 3*a+1; fi; L := L+1; od: RETURN(L); end;
MATHEMATICA
numberOfSteps[x0_] := Block[{x = x0, nos = 0}, While [x != 1 , If[Mod[x, 2] == 0 , x = x/2, x = 3*x + 1]; nos++]; nos]; a[1] = 1; a[n_] := a[n] = Block[{x = a[n-1] + 1}, record = numberOfSteps[x - 1]; While[ numberOfSteps[x] <= record, x++]; x]; A006877 = Table[ Print[a[n]]; a[n], {n, 1, 44}](* Jean-François Alcover, Feb 14 2012 *)
DeleteDuplicates[Table[{n, Length[NestWhileList[If[EvenQ[#], #/2, 3#+1]&, n, #>1&]]}, {n, 838000}], GreaterEqual[#1[[2]], #2[[2]]]&][[All, 1]] (* Harvey P. Dale, May 13 2022 *)
PROG
(PARI) A006577(n)=my(s); while(n>1, n=if(n%2, 3*n+1, n/2); s++); s
step(n, r)=my(t); forstep(k=bitor(n, 1), 2*n, 2, t=A006577(k); if(t>r, return([k, t]))); [2*n, r+1]
r=0; print1(n=1); for(i=1, 100, [n, r]=step(n, r); print1(", "n)) \\ Charles R Greathouse IV, Apr 01 2013
(Python)
c1 = lambda x: (3*x+1 if (x%2) else x>>1)
r = -1
for n in range(1, 10**5):
a=0 ; n1=n
while n>1: n=c1(n); a+=1;
if a > r: print(n1, end = ', '); r=a
print('...') # Ya-Ping Lu and Robert Munafo, Mar 22 2024
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
STATUS
approved