login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006877 In the `3x+1' problem, these values for the starting value set new records for number of steps to reach 1.
(Formerly M0748)
18
1, 2, 3, 6, 7, 9, 18, 25, 27, 54, 73, 97, 129, 171, 231, 313, 327, 649, 703, 871, 1161, 2223, 2463, 2919, 3711, 6171, 10971, 13255, 17647, 23529, 26623, 34239, 35655, 52527, 77031, 106239, 142587, 156159, 216367, 230631, 410011, 511935, 626331, 837799 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Both the 3x+1 steps and the halving steps are counted.

REFERENCES

Gonnet, Gaston H. "Computations on the 3n+ 1 conjecture." Maple Technical Newsletter 6 (1991): 18-22.

B. Hayes, Computer Recreations: On the ups and downs of hailstone numbers, Scientific American, 250 (No. 1, 1984), pp. 10-16.

D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.

G. T. Leavens and M. Vermeulen, 3x+1 search problems, Computers and Mathematics with Applications, 24 (1992), 79-99.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..130 (from Eric Roosendaal's data)

T. Ahmed, H. Snevily, Are there an infinite number of Collatz integers?, 2013.

J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23.

R. Munafo, Integer Sequences Related to 3x+1 Collatz Iteration

Eric Roosendaal, 3x+1 Delay Records

Index entries for sequences from "Goedel, Escher, Bach"

Index entries for sequences related to 3x+1 (or Collatz) problem

MAPLE

A006877 := proc(n) local a, L; L := 0; a := n; while a <> 1 do if a mod 2 = 0 then a := a/2; else a := 3*a+1; fi; L := L+1; od: RETURN(L); end;

MATHEMATICA

numberOfSteps[x0_] := Block[{x = x0, nos = 0}, While [x != 1 , If[Mod[x, 2] == 0 , x = x/2, x = 3*x + 1]; nos++]; nos]; a[1] = 1; a[n_] := a[n] = Block[{x = a[n-1] + 1}, record = numberOfSteps[x - 1]; While[ numberOfSteps[x] <= record, x++]; x]; A006877 = Table[ Print[a[n]]; a[n], {n, 1, 44}](* Jean-Fran├žois Alcover, Feb 14 2012 *)

PROG

(PARI) A006577(n)=my(s); while(n>1, n=if(n%2, 3*n+1, n/2); s++); s

step(n, r)=my(t); forstep(k=bitor(n, 1), 2*n, 2, t=A006577(k); if(t>r, return([k, t]))); [2*n, r+1]

r=0; print1(n=1); for(i=1, 100, [n, r]=step(n, r); print1(", "n)) \\ Charles R Greathouse IV, Apr 01 2013

CROSSREFS

Cf. A006884, A006885, A006877, A006878, A033492.

Sequence in context: A018700 A018295 A033495 * A263881 A208892 A085397

Adjacent sequences:  A006874 A006875 A006876 * A006878 A006879 A006880

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane, Robert Munafo

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 19 11:12 EDT 2017. Contains 290797 sequences.