login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006877
In the '3x+1' problem, these values for the starting value set new records for number of steps to reach 1.
(Formerly M0748)
29
1, 2, 3, 6, 7, 9, 18, 25, 27, 54, 73, 97, 129, 171, 231, 313, 327, 649, 703, 871, 1161, 2223, 2463, 2919, 3711, 6171, 10971, 13255, 17647, 23529, 26623, 34239, 35655, 52527, 77031, 106239, 142587, 156159, 216367, 230631, 410011, 511935, 626331, 837799
OFFSET
1,2
COMMENTS
Both the 3x+1 steps and the halving steps are counted.
This sequence without a(2) = 2 specifies where records occur in A208981. - Omar E. Pol, Apr 14 2022
REFERENCES
D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 1..148 (from Eric Rosendaal's 3x+1 Delay Records, terms 1..130 from T. D. Noe)
Gaston H. Gonnet, Computations on the 3n+1 conjecture, Maple Technical Newsletter 6 (1991): 18-22.
Brian Hayes, Computer Recreations: On the ups and downs of hailstone numbers, Scientific American, 250 (No. 1, 1984), pp. 10-16.
J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23.
G. T. Leavens and M. Vermeulen, 3x+1 search programs, Computers and Mathematics with Applications, 24 (1992), 79-99. (Annotated scanned copy)
Eric Roosendaal, 3x+1 Delay Records
David Barina, Convergence verification of the Collatz problem, The Journal of Supercomputing 77(3) (2021), 2681-2688.
David Barina, Computational Verification of the Collatz Problem, preprint on Research Square (2024).
MAPLE
A006877 := proc(n) local a, L; L := 0; a := n; while a <> 1 do if a mod 2 = 0 then a := a/2; else a := 3*a+1; fi; L := L+1; od: RETURN(L); end;
MATHEMATICA
numberOfSteps[x0_] := Block[{x = x0, nos = 0}, While [x != 1 , If[Mod[x, 2] == 0 , x = x/2, x = 3*x + 1]; nos++]; nos]; a[1] = 1; a[n_] := a[n] = Block[{x = a[n-1] + 1}, record = numberOfSteps[x - 1]; While[ numberOfSteps[x] <= record, x++]; x]; A006877 = Table[ Print[a[n]]; a[n], {n, 1, 44}](* Jean-François Alcover, Feb 14 2012 *)
DeleteDuplicates[Table[{n, Length[NestWhileList[If[EvenQ[#], #/2, 3#+1]&, n, #>1&]]}, {n, 838000}], GreaterEqual[#1[[2]], #2[[2]]]&][[All, 1]] (* Harvey P. Dale, May 13 2022 *)
PROG
(PARI) A006577(n)=my(s); while(n>1, n=if(n%2, 3*n+1, n/2); s++); s
step(n, r)=my(t); forstep(k=bitor(n, 1), 2*n, 2, t=A006577(k); if(t>r, return([k, t]))); [2*n, r+1]
r=0; print1(n=1); for(i=1, 100, [n, r]=step(n, r); print1(", "n)) \\ Charles R Greathouse IV, Apr 01 2013
(Python)
c1 = lambda x: (3*x+1 if (x%2) else x>>1)
r = -1
for n in range(1, 10**5):
a=0 ; n1=n
while n>1: n=c1(n); a+=1;
if a > r: print(n1, end = ', '); r=a
print('...') # Ya-Ping Lu and Robert Munafo, Mar 22 2024
CROSSREFS
KEYWORD
nonn,nice
STATUS
approved