login
A027273
a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A026552.
18
2, 16, 52, 428, 1516, 12792, 46936, 402164, 1504432, 13015480, 49288856, 429204354, 1639174304, 14340670000, 55108565584, 483825847108, 1868067054968, 16445659005424, 63734526307552, 562323306397388, 2185849699156352, 19320211642880176, 75288454939134992
OFFSET
1,1
LINKS
FORMULA
a(n) = Sum_{k=0..2*n-1} A026552(n, k)*A026552(n, k+1).
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *)
a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, k+1], {k, 0, 2*n-1}]];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 18 2021 *)
PROG
(Sage)
@CachedFunction
def T(n, k): # T = A026552
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n+2)//2
elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
else: return T(n-1, k) + T(n-1, k-2)
@CachedFunction
def a(n): return sum( T(n, k)*T(n, k+1) for k in (0..2*n-1) )
[a(n) for n in (1..40)] # G. C. Greubel, Dec 18 2021
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Oct 26 2019
STATUS
approved