login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026557
a(n) = T(n, n-4), T given by A026552. Also a(n) = number of integer strings s(0),...,s(n) counted by T, such that s(n)=4.
18
1, 3, 12, 28, 93, 201, 631, 1316, 4037, 8259, 25052, 50680, 152782, 306958, 921982, 1844304, 5526849, 11024331, 32987492, 65675764, 196323853, 390374193, 1166171943, 2316881892, 6918228187, 13737041045, 41007165500
OFFSET
4,2
LINKS
FORMULA
a(n) = A026552(n, n-4).
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *)
Table[T[n, n-4], {n, 4, 40}] (* G. C. Greubel, Dec 17 2021 *)
PROG
(Sage)
@CachedFunction
def T(n, k): # T = A026552
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n+2)//2
elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
else: return T(n-1, k) + T(n-1, k-2)
[T(n, n-4) for n in (4..40)] # G. C. Greubel, Dec 17 2021
KEYWORD
nonn
STATUS
approved