login
A026567
a(n) = Sum_{i=0..2*n} Sum_{j=0..i} T(i, j), where T is given by A026552.
21
1, 4, 13, 31, 85, 193, 517, 1165, 3109, 6997, 18661, 41989, 111973, 251941, 671845, 1511653, 4031077, 9069925, 24186469, 54419557, 145118821, 326517349, 870712933, 1959104101, 5224277605, 11754624613, 31345665637, 70527747685
OFFSET
0,2
FORMULA
a(n) = Sum_{i=0..2*n} Sum_{j=0..i} A026552(i, j).
G.f.: (1+3*x+3*x^2)/((1-x)*(1-6*x^2)). - Ralf Stephan, Feb 03 2004
a(n) = 6*a(n-2) + 7. - Philippe Deléham, Feb 24 2014
a(2*k) = A233325(k). - Philippe Deléham, Feb 24 2014
From Colin Barker, Nov 25 2016: (Start)
a(n) = (2^(n/2+2) * 3^(n/2+1) - 7)/5 for n even.
a(n) = (2^((n-1)/2) * 3^((n+5)/2) - 7)/5 for n odd. (End)
a(n) = (1/10)*(2*(1+(-1)^n)*6^((n+2)/2) + 27*(1-(-1)^n)*6^((n-1)/2) - 14). - G. C. Greubel, Dec 19 2021
MATHEMATICA
CoefficientList[Series[(1 +3x +3x^2)/((1-x)(1-6x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 25 2014 *)
LinearRecurrence[{1, 6, -6}, {1, 4, 13}, 30] (* Harvey P. Dale, Aug 23 2014 *)
PROG
(Magma) [Truncate((2*(1+(-1)^n)*6^((n+2)/2) + 27*(1-(-1)^n)*6^((n-1)/2) -14)/10): n in [0..40]]; // G. C. Greubel, Dec 19 2021
(Sage) [(1/10)*(2*(1+(-1)^n)*6^((n+2)/2) +27*(1-(-1)^n)*6^((n-1)/2) -14) for n in (0..40)] # G. C. Greubel, Dec 19 2021
KEYWORD
nonn,easy
STATUS
approved