login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026565
a(n) = 6*a(n-2), starting with 1, 3, 9.
4
1, 3, 9, 18, 54, 108, 324, 648, 1944, 3888, 11664, 23328, 69984, 139968, 419904, 839808, 2519424, 5038848, 15116544, 30233088, 90699264, 181398528, 544195584, 1088391168, 3265173504, 6530347008, 19591041024, 39182082048
OFFSET
0,2
FORMULA
a(n) = Sum_{j=0..2*n} A026552(n, j).
G.f.: (1+3*x+3*x^2)/(1-6*x^2). - Ralf Stephan, Feb 03 2004
a(0)=1, a(1)=3; a(n) = 3*a(n-1) if n is even, a(n) = 2*a(n-1) if n is odd. - Vincenzo Librandi, Nov 19 2010
a(n) = (1/4)*6^(n/2)*(3*(1+(-1)^n) + sqrt(6)*(1-(-1)^n)) - (1/2)*[n=0]. - G. C. Greubel, Dec 17 2021
MATHEMATICA
Table[(1/4)*6^(n/2)*(3*(1+(-1)^n) + Sqrt[6]*(1-(-1)^n)) - (1/2)*Boole[n==0], {n, 0, 35}] (* G. C. Greubel, Dec 17 2021 *)
PROG
(Magma) [1] cat [n le 2 select 3^n else 6*Self(n-2): n in [1..35]]; // G. C. Greubel, Dec 17 2021
(Sage)
def A026565(n): return ( (3/2)*6^(n/2) if (n%2==0) else 3*6^((n-1)/2) ) - bool(n==0)/2
[A026565(n) for n in (0..30)] # G. C. Greubel, Dec 17 2021
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Better name from Ralf Stephan, Jul 17 2013
STATUS
approved