login
A174470
G.F.: exp( Sum_{n>=1} A014578(n)*(3x)^n/n ), where A014578 is the binary expansion of Thue constant.
0
1, 3, 9, 18, 54, 162, 405, 1215, 3645, 11907, 35721, 107163, 279936, 839808, 2519424, 6948099, 20844297, 62532891, 199762767, 599288301, 1797864903, 4931772480, 14795317440, 44385952320, 125801650638, 377404951914, 1132214855742
OFFSET
0,2
COMMENTS
Conjectured to consist entirely of integers.
PROG
(PARI) {a(n)=if(n==0, 1, polcoeff(exp(sum(m=1, n, sum(k=0, ceil(log(m)/log(3)), (-1)^k*(floor(m/3^k)-floor((m-1)/3^k)))*(3*x)^m/m)+x*O(x^n)), n))}
CROSSREFS
Cf. A014578.
Sequence in context: A181574 A101652 A026565 * A375903 A190905 A133136
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 28 2010
STATUS
approved