login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174467
G.f.: exp( Sum_{n>=1} A174468(n)*x^n/n ) where A174468(n) = Sum_{d|n} d*sigma(n/d)*sigma(d).
2
1, 1, 5, 10, 31, 58, 157, 299, 711, 1367, 2987, 5679, 11807, 22117, 44006, 81513, 156885, 286413, 537058, 967367, 1773882, 3155223, 5677183, 9976095, 17661695, 30682683, 53544796, 92037152, 158575796, 269850363, 459636546, 774851829
OFFSET
0,3
LINKS
Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, A unified treatment of families of partition functions, La Matematica (2024). Preprint available as arXiv:2303.02240 [math.CO], 2023.
FORMULA
From Ricardo Gómez Aíza, Mar 08 2023: (Start)
E.g.f.: Product_{n>=1,m>=1,k>=1} 1 / (1 - x^(n * m * k))^n.
log(a(n) / n!) ~ (3/2) * (Zeta(3) * Pi^4 / 18)^(1/3) * n^(2/3). (End)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, x^m/m*sumdiv(m, d, d*sigma(m/d)*sigma(d)))+x*O(x^n)), n)}
CROSSREFS
Cf. A174465, A000203 (sigma).
Sequence in context: A032296 A052648 A020995 * A005201 A221304 A094234
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 04 2010
STATUS
approved